/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include #include #include "paddle/fluid/lite/core/compatible_tensor.h" #include "paddle/fluid/lite/opencl/cl_caller.h" #include "paddle/fluid/lite/opencl/cl_context.h" #include "paddle/fluid/lite/opencl/cl_engine.h" #include "paddle/fluid/lite/opencl/cl_helper.h" #include "paddle/fluid/lite/opencl/cl_image.h" DEFINE_string(cl_path, "/data/local/tmp/opencl", "The OpenCL kernels path."); namespace paddle { namespace lite { TEST(cl_test, engine_test) { auto* engine = CLEngine::Global(); CHECK(engine->IsInitSuccess()); engine->set_cl_path(FLAGS_cl_path); engine->platform(); engine->device(); engine->command_queue(); auto& context = engine->context(); auto program = engine->CreateProgram( context, engine->cl_path() + "/cl_kernel/" + "elementwise_add_kernel.cl"); auto event = engine->CreateEvent(context); CHECK(engine->BuildProgram(program.get())); } TEST(cl_test, context_test) { auto* engine = CLEngine::Global(); CHECK(engine->IsInitSuccess()); engine->set_cl_path(FLAGS_cl_path); CLContext context; context.GetKernel("pool_max", "pool_kernel.cl", ""); context.GetKernel("elementwise_add", "elementwise_add_kernel.cl", ""); context.GetKernel("elementwise_add", "elementwise_add_kernel.cl", ""); } TEST(cl_test, kernel_test) { auto* engine = CLEngine::Global(); CHECK(engine->IsInitSuccess()); engine->set_cl_path(FLAGS_cl_path); std::unique_ptr context(new CLContext); // std::unique_ptr helper(new CLHelper(context.get())); std::unique_ptr helper(new CLHelper); helper->set_context(context.get()); helper->AddKernel("elementwise_add", "elementwise_add_kernel.cl"); helper->AddKernel("pool_max", "pool_kernel.cl"); helper->AddKernel("elementwise_add", "elementwise_add_kernel.cl"); auto kernel = helper->GetKernel(2); std::unique_ptr in_data(new float[4 * 3 * 256 * 512]); for (int i = 0; i < 4 * 3 * 256 * 512; i++) { in_data[i] = 1.f; } const DDim in_dim = DDim(std::vector{4, 3, 256, 512}); CLImage in_image; in_image.set_tensor_data(in_data.get(), in_dim); in_image.InitNormalCLImage(helper->OpenCLContext()); LOG(INFO) << in_image; std::unique_ptr bias_data(new float[4 * 3 * 256 * 512]); for (int i = 0; i < 4 * 3 * 256 * 512; i++) { bias_data[i] = 2.f; } const DDim bias_dim = DDim(std::vector{4, 3, 256, 512}); CLImage bias_image; bias_image.set_tensor_data(bias_data.get(), bias_dim); bias_image.InitNormalCLImage(helper->OpenCLContext()); LOG(INFO) << bias_image; CLImage out_image; const DDim out_dim = DDim(std::vector{4, 3, 256, 512}); out_image.InitEmptyImage(helper->OpenCLContext(), out_dim); LOG(INFO) << out_image; cl_int status; status = kernel.setArg(0, *in_image.cl_image()); CL_CHECK_ERRORS(status); status = kernel.setArg(1, *bias_image.cl_image()); CL_CHECK_ERRORS(status); status = kernel.setArg(2, *out_image.cl_image()); CL_CHECK_ERRORS(status); // auto global_work_size = helper->DefaultWorkSize(out_image); size_t width = in_image.ImageWidth(); size_t height = in_image.ImageHeight(); auto global_work_size = cl::NDRange{width, height}; cl::Event event; status = helper->OpenCLCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, &event); CL_CHECK_ERRORS(status); status = helper->OpenCLCommandQueue().finish(); CL_CHECK_ERRORS(status); double start_nanos = event.getProfilingInfo(); double stop_nanos = event.getProfilingInfo(); double elapsed_micros = (stop_nanos - start_nanos) / 1000.0; LOG(INFO) << "Kernel Run Cost Time: " << elapsed_micros << " us."; LOG(INFO) << out_image; } TEST(cl_test, channel_add_test) { std::default_random_engine engine; std::uniform_real_distribution dist(-5, 5); const DDim in_dim = DDim(std::vector{4, 16, 256, 512}); std::unique_ptr in_data(new float[4 * 16 * 256 * 512]); for (int i = 0; i < 4 * 16 * 256 * 512; i++) { in_data[i] = dist(engine); } const DDim bias_dim = DDim(std::vector{16}); std::unique_ptr bias_data(new float[16]); for (int i = 0; i < 16; i++) { bias_data[i] = dist(engine); } std::unique_ptr out_ref(new float[4 * 16 * 256 * 512]); for (int i = 0; i < 4; i++) { for (int j = 0; j < 16; j++) { float b = bias_data[j]; for (int k = 0; k < 256 * 512; k++) { int index = (i * 16 + j) * 256 * 512 + k; out_ref[index] = in_data[index] + b; } } } const DDim out_dim = DDim(std::vector{4, 16, 256, 512}); std::unique_ptr out(new float[4 * 16 * 256 * 512]); bool status = InitOpenCLEngine(FLAGS_cl_path); CHECK(status) << "Fail to initialize OpenCL engine."; std::unique_ptr context(new CLContext); std::unique_ptr helper(new CLHelper(context.get())); helper->AddKernel("elementwise_add", "elementwise_add_kernel.cl"); helper->AddKernel("channel_add", "channel_add_kernel.cl"); elementwise_add(helper.get(), in_data.get(), in_dim, bias_data.get(), bias_dim, out.get(), out_dim); int stride = 4 * 16 * 256 * 512 / 20; for (int i = 0; i < 4 * 16 * 256 * 512; i += stride) { std::cout << out[i] << " "; } std::cout << std::endl; for (int i = 0; i < 4 * 16 * 256 * 512; i++) { EXPECT_NEAR(out[i], out_ref[i], 1e-6); } } TEST(cl_test, elementwise_add_test) { std::default_random_engine engine; std::uniform_real_distribution dist(-5, 5); const DDim in_dim = DDim(std::vector{4, 16, 256, 512}); std::unique_ptr in_data(new float[4 * 16 * 256 * 512]); for (int i = 0; i < 4 * 16 * 256 * 512; i++) { in_data[i] = dist(engine); } const DDim bias_dim = DDim(std::vector{4, 16, 256, 512}); std::unique_ptr bias_data(new float[4 * 16 * 256 * 512]); for (int i = 0; i < 4 * 16 * 256 * 512; i++) { bias_data[i] = dist(engine); } std::unique_ptr out_ref(new float[4 * 16 * 256 * 512]); for (int i = 0; i < 4 * 16 * 256 * 512; i++) { out_ref[i] = in_data[i] + bias_data[i]; } const DDim out_dim = DDim(std::vector{4, 16, 256, 512}); std::unique_ptr out(new float[4 * 16 * 256 * 512]); bool status = InitOpenCLEngine(FLAGS_cl_path); CHECK(status) << "Fail to initialize OpenCL engine."; std::unique_ptr context(new CLContext); std::unique_ptr helper(new CLHelper(context.get())); helper->AddKernel("elementwise_add", "elementwise_add_kernel.cl"); helper->AddKernel("channel_add", "channel_add_kernel.cl"); elementwise_add(helper.get(), in_data.get(), in_dim, bias_data.get(), bias_dim, out.get(), out_dim); int stride = 4 * 16 * 256 * 512 / 20; for (int i = 0; i < 4 * 16 * 256 * 512; i += stride) { std::cout << out[i] << " "; } std::cout << std::endl; for (int i = 0; i < 4 * 16 * 256 * 512; i++) { EXPECT_NEAR(out[i], out_ref[i], 1e-6); } } void pool_avg(const int padding_height, const int padding_width, const int stride_height, const int stride_width, const int ksize_height, const int ksize_width, const float* input_data, const DDim& in_dim, float* output_data, const DDim& out_dim) { const int batch_size = in_dim[0]; const int input_height = in_dim[2]; const int input_width = in_dim[3]; const int output_channels = out_dim[1]; const int output_height = out_dim[2]; const int output_width = out_dim[3]; const size_t input_spatial_size = input_height * input_width; const size_t output_spatial_size = output_height * output_width; for (int i = 0; i < batch_size; i++) { for (int c = 0; c < output_channels; ++c) { int channel = i * output_channels + c; const float* input_ptr = input_data + channel * input_spatial_size; float* output_ptr = output_data + channel * output_spatial_size; for (int ph = 0; ph < output_height; ++ph) { int hstart = ph * stride_height - padding_height; int hend = std::min(hstart + ksize_height, input_height); hstart = std::max(hstart, 0); for (int pw = 0; pw < output_width; ++pw) { int wstart = pw * stride_width - padding_width; int wend = std::min(wstart + ksize_width, input_width); wstart = std::max(wstart, 0); float val = 0.f; int count = 0; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { val += input_ptr[h * input_width + w]; ++count; } } output_ptr[ph * output_width + pw] = (count > 0) ? val * (1.f / count) : 0.f; } } } } } TEST(cl_test, pool_test) { std::default_random_engine engine; std::uniform_real_distribution dist(-5, 5); const DDim in_dim = DDim(std::vector{4, 1024, 7, 7}); std::unique_ptr in_data(new float[4 * 1024 * 7 * 7]); for (int i = 0; i < 4 * 1024 * 7 * 7; i++) { in_data[i] = dist(engine); } const DDim out_dim = DDim(std::vector{4, 1024, 1, 1}); std::unique_ptr out(new float[4 * 1024 * 1 * 1]); std::unique_ptr out_ref(new float[4 * 1024 * 1 * 1]); bool status = InitOpenCLEngine(FLAGS_cl_path); CHECK(status) << "Fail to initialize OpenCL engine."; std::unique_ptr context(new CLContext); std::unique_ptr helper(new CLHelper(context.get())); helper->AddKernel("pool_max", "pool_kernel.cl"); helper->AddKernel("pool_avg", "pool_kernel.cl"); pool(helper.get(), "avg", 0, 0, 1, 1, 7, 7, in_data.get(), in_dim, out.get(), out_dim); pool_avg(0, 0, 1, 1, 7, 7, in_data.get(), in_dim, out_ref.get(), out_dim); for (int i = 0; i < 4 * 1024 * 1 * 1; i++) { EXPECT_NEAR(out[i], out_ref[i], 1e-6); } } } // namespace lite } // namespace paddle