// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h" #include #include #include #include #include #include #include #include #include "cinn/common/target.h" #include "gflags/gflags.h" #include "glog/logging.h" #include "gtest/gtest.h" #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/operators/cinn/cinn_launch_op.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" DECLARE_string(allow_cinn_ops); DECLARE_string(deny_cinn_ops); namespace paddle { namespace framework { namespace paddle2cinn { using ir::Graph; using ::cinn::common::Target; namespace { template > std::ostream& operator<<(std::ostream& os, const std::vector& vec) { os << "{ "; for (auto e : vec) { os << e << " "; } os << "}\n"; return os; } // Get compilation_key values std::vector GetCompilationKeys(const Graph& graph) { std::vector compilation_keys; for (auto& node : graph.Nodes()) { if (node->IsOp() && node->Name() == kCinnLaunchOp) { compilation_keys.emplace_back(BOOST_GET_CONST( std::string, node->Op()->GetAttr(operators::kCompilationKey))); } } return compilation_keys; } // Extract op types from a graph std::unordered_set ExtractOpTypes(const Graph& graph) { std::unordered_set op_types; for (auto& node : graph.Nodes()) { if (node->IsOp()) { op_types.emplace(node->Name()); } } return op_types; } // Get inputs info std::unordered_map> GetInputsInfo( const std::string& key, const Graph& graph) { std::unordered_set inputs; for (auto& node : graph.Nodes()) { if (node->IsOp() && node->Name() == kCinnLaunchOp) { if (BOOST_GET_CONST(std::string, node->Op()->GetAttr(operators::kCompilationKey)) != key) { continue; } for (auto in_var_name : node->Op()->InputArgumentNames()) { VLOG(4) << "get an input name: " << in_var_name; inputs.emplace(in_var_name); } } } std::unordered_map> inputs_info; for (auto& node : graph.Nodes()) { if (node->IsVar() && inputs.count(node->Name())) { VLOG(4) << node->Name() << " : " << node->Var()->GetShape(); inputs_info.emplace(node->Name(), node->Var()->GetShape()); } } return inputs_info; } // X - // | -> mul -> MUL_OUT - // Y - | -> elementwise_add -> ADD_OUT -> relu -> RELU_OUT // Z - std::unique_ptr CreateGraph() { ProgramDesc program; auto* global_block = program.MutableBlock(0); // mul auto* x = global_block->Var("X"); x->SetType(proto::VarType::LOD_TENSOR); x->SetLoDLevel(0); x->SetDataType(proto::VarType::FP32); x->SetShape({1000, 784}); auto* y = global_block->Var("Y"); y->SetType(proto::VarType::LOD_TENSOR); y->SetLoDLevel(0); y->SetDataType(proto::VarType::FP32); y->SetShape({784, 100}); y->SetPersistable(true); y->SetIsParameter(true); auto* mul_op = global_block->AppendOp(); mul_op->SetType("mul"); mul_op->SetInput("X", {x->Name()}); mul_op->SetInput("Y", {y->Name()}); auto* mul_out = global_block->Var("MUL_OUT"); mul_out->SetType(proto::VarType::LOD_TENSOR); mul_out->SetLoDLevel(0); mul_out->SetDataType(proto::VarType::FP32); mul_out->SetShape({1000, 100}); mul_op->SetOutput("Out", {mul_out->Name()}); // add auto* z = global_block->Var("Z"); z->SetType(proto::VarType::LOD_TENSOR); z->SetLoDLevel(0); z->SetDataType(proto::VarType::FP32); z->SetShape({100}); z->SetPersistable(true); z->SetIsParameter(true); auto* add_op = global_block->AppendOp(); add_op->SetType("elementwise_add"); add_op->SetInput("X", {mul_out->Name()}); add_op->SetInput("Y", {z->Name()}); auto* add_out = global_block->Var("ADD_OUT"); add_out->SetType(proto::VarType::LOD_TENSOR); add_out->SetLoDLevel(0); add_out->SetDataType(proto::VarType::FP32); add_out->SetShape({1000, 100}); add_op->SetOutput("Out", {add_out->Name()}); // relu auto* relu_op = global_block->AppendOp(); relu_op->SetType("relu"); relu_op->SetInput("X", {add_out->Name()}); auto* relu_out = global_block->Var("RELU_OUT"); relu_out->SetType(proto::VarType::LOD_TENSOR); relu_out->SetLoDLevel(0); relu_out->SetDataType(proto::VarType::FP32); relu_out->SetShape({1000, 100}); relu_op->SetOutput("Out", {relu_out->Name()}); program.Flush(); return std::make_unique(program); } } // namespace TEST(CinnCompilerTest, FlagController) { // init auto* cinn_compiler = CinnCompiler::GetInstance(); auto cinn_pass = ir::PassRegistry::Instance().Get("build_cinn_pass"); // apply build_cinn_pass & FLAGS_allow_cinn_ops="add" { FLAGS_allow_cinn_ops = "add"; auto graph = CreateGraph(); cinn_compiler->Clear(); cinn_pass->Apply(graph.get()); auto compilation_keys = GetCompilationKeys(*graph); ASSERT_EQ(compilation_keys.size(), 0); } // apply build_cinn_pass & FLAGS_allow_cinn_ops="mul;relu" { FLAGS_allow_cinn_ops = "mul;relu"; auto graph = CreateGraph(); cinn_compiler->Clear(); cinn_pass->Apply(graph.get()); auto compilation_keys = GetCompilationKeys(*graph); ASSERT_EQ(compilation_keys.size(), 2); } // apply build_cinn_pass & FLAGS_allow_cinn_ops="" & // FLAGS_deny_cinn_ops="relu" { FLAGS_allow_cinn_ops = ""; FLAGS_deny_cinn_ops = "elementwise_add;relu"; auto graph = CreateGraph(); cinn_compiler->Clear(); cinn_pass->Apply(graph.get()); auto compilation_keys = GetCompilationKeys(*graph); ASSERT_EQ(compilation_keys.size(), 1); const auto& compiling_graph = cinn_compiler->FindGraph(compilation_keys[0]); auto op_types = ExtractOpTypes(compiling_graph); ASSERT_EQ(op_types.size(), 3); ASSERT_EQ(op_types.count("feed"), 1); ASSERT_EQ(op_types.count("mul"), 1); ASSERT_EQ(op_types.count("fetch"), 1); } // recover flags FLAGS_allow_cinn_ops = ""; FLAGS_deny_cinn_ops = ""; } TEST(CinnCompilerTest, Compile) { auto viz_pass = ir::PassRegistry::Instance().Get("graph_viz_pass"); auto cinn_pass = ir::PassRegistry::Instance().Get("build_cinn_pass"); auto viz_graph = [&viz_pass](const std::string& viz_path, Graph* graph) { viz_pass->Erase("graph_viz_path"); viz_pass->Set("graph_viz_path", new std::string(viz_path)); viz_pass->Apply(graph); }; // create a graph auto graph = CreateGraph(); viz_graph("origin_graph.dot", graph.get()); // apply build_cinn_pass cinn_pass->Apply(graph.get()); viz_graph("processed_graph.dot", graph.get()); // get the compilation_key auto compilation_keys = GetCompilationKeys(*graph); ASSERT_EQ(compilation_keys.size(), 1); const auto& compilation_key = compilation_keys[0]; auto* cinn_compiler = CinnCompiler::GetInstance(); VLOG(4) << "The graph to be compiled:\n" << cinn_compiler->VizGraph(compilation_key); const auto& compiling_graph = cinn_compiler->FindGraph(compilation_key); viz_graph("compiling_graph.dot", const_cast(&compiling_graph)); EXPECT_THROW(cinn_compiler->FindGraph("no_existed"), paddle::platform::EnforceNotMet); auto inputs_info = GetInputsInfo(compilation_key, *graph); std::unordered_map create_inputs; for (const auto& pair : inputs_info) { auto& tensor = create_inputs[pair.first]; tensor.Resize(make_ddim(pair.second)); tensor.mutable_data(platform::CPUPlace()); } std::map input_tensors; std::for_each(create_inputs.begin(), create_inputs.end(), [&input_tensors](const auto& val) { input_tensors.emplace(val.first, &val.second); }); auto compile_fn = [&](const Target& target) { const auto& compiled_obj = cinn_compiler->Compile(compiling_graph, input_tensors, target); ASSERT_NE(compiled_obj.compiler, nullptr); ASSERT_NE(compiled_obj.runtime_program, nullptr); ASSERT_NE(compiled_obj.scope, nullptr); ASSERT_FALSE(compiled_obj.paddle2cinn_varmap.empty()); ASSERT_NE(compiled_obj.launch_context, nullptr); const auto& cached_obj = cinn_compiler->Compile(compilation_key, input_tensors, target); ASSERT_EQ(reinterpret_cast(&compiled_obj), reinterpret_cast(&cached_obj)); ASSERT_EQ(cached_obj.cached_index + 1, cinn_compiler->real_compiled_num()); const auto& ret_obj = cinn_compiler->GetCompiledObject(cached_obj.cached_index); ASSERT_EQ(reinterpret_cast(&compiled_obj), reinterpret_cast(&ret_obj)); }; // GPU Compilation compile_fn(::cinn::common::DefaultNVGPUTarget()); ASSERT_EQ(cinn_compiler->real_compiled_num(), 1); // CPU Compilation compile_fn(::cinn::common::DefaultHostTarget()); ASSERT_EQ(cinn_compiler->real_compiled_num(), 2); } } // namespace paddle2cinn } // namespace framework } // namespace paddle USE_PASS(build_cinn_pass); USE_PASS(graph_viz_pass); USE_OP(mul); USE_OP(relu); USE_OP(elementwise_add);