/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/math/im2col.h" #include "paddle/operators/math/math_function.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template class GemmConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); Tensor* filter = const_cast(context.Input("Filter")); Tensor* output = context.Output("Output"); output->mutable_data(context.GetPlace()); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); auto filter_dims = filter->dims(); int batch_size = input->dims()[0]; int input_channels = input->dims()[1]; int filter_height = filter->dims()[filter->dims().size() - 2]; int filter_width = filter->dims()[filter->dims().size() - 1]; int output_height = output->dims()[2]; int output_width = output->dims()[3]; paddle::operators::math::Im2ColFunctor< paddle::operators::math::ColFormat::kCFO, Place, T> im2col; framework::DDim col_shape = {input_channels, filter_height, filter_width, output_height, output_width}; Tensor col; col.mutable_data(col_shape, context.GetPlace()); auto* device_context = const_cast(context.device_context_); framework::DDim input_shape = {input->dims()[1], input->dims()[2], input->dims()[3]}; framework::DDim filter_matrix_shape = { filter->dims()[0], filter->dims()[1] * filter->dims()[2] * filter->dims()[3]}; framework::DDim col_matrix_shape = { input_channels * filter_height * filter_width, output_height * output_width}; framework::DDim output_matrix_shape = { output->dims()[1], output->dims()[2] * output->dims()[3]}; filter->Resize(filter_matrix_shape); // convolution operator: im2col + gemm for (int i = 0; i < batch_size; i++) { // im2col Tensor in_slice = input->Slice(i, i + 1); in_slice.Resize(input_shape); col.Resize(col_shape); im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1], device_context); // gemm Tensor out_slice = output->Slice(i, i + 1); out_slice.Resize(output_matrix_shape); col.Resize(col_matrix_shape); math::matmul(*filter, false, col, false, T(1.0), &out_slice, T(0.0), device_context); } filter->Resize(filter_dims); } }; template class GemmConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); Tensor* filter = const_cast(context.Input("Filter")); const Tensor* output_grad = context.Input(framework::GradVarName("Output")); Tensor* input_grad = context.Output(framework::GradVarName("Input")); Tensor* filter_grad = context.Output(framework::GradVarName("Filter")); input_grad->mutable_data(context.GetPlace()); filter_grad->mutable_data(context.GetPlace()); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); auto filter_dims = filter->dims(); int batch_size = input->dims()[0]; int input_channels = input->dims()[1]; int filter_height = filter->dims()[filter->dims().size() - 2]; int filter_width = filter->dims()[filter->dims().size() - 1]; int output_height = output_grad->dims()[2]; int output_width = output_grad->dims()[3]; paddle::operators::math::Col2ImFunctor< paddle::operators::math::ColFormat::kCFO, Place, T> col2im; paddle::operators::math::Im2ColFunctor< paddle::operators::math::ColFormat::kCFO, Place, T> im2col; Tensor col; framework::DDim col_shape = {input_channels, filter_height, filter_width, output_height, output_width}; col.mutable_data(col_shape, context.GetPlace()); auto* device_context = const_cast(context.device_context_); framework::DDim input_shape = {input->dims()[1], input->dims()[2], input->dims()[3]}; framework::DDim filter_matrix_shape = { filter->dims()[0], filter->dims()[1] * filter->dims()[2] * filter->dims()[3]}; framework::DDim col_matrix_shape = { input_channels * filter_height * filter_width, output_height * output_width}; framework::DDim output_matrix_shape = { output_grad->dims()[1], output_grad->dims()[2] * output_grad->dims()[3]}; filter->Resize(filter_matrix_shape); filter_grad->Resize(filter_matrix_shape); auto t1 = framework::EigenVector::Flatten(*filter_grad); t1.device(context.GetEigenDevice()) = t1.constant(static_cast(0)); auto t2 = framework::EigenVector::Flatten(*input_grad); t2.device(context.GetEigenDevice()) = t2.constant(static_cast(0)); // convolution backward input operator: gemm + col2im // convolution backward weight operator: im2col + gemm for (int i = 0; i < batch_size; i++) { // gemm Tensor out_slice = output_grad->Slice(i, i + 1); out_slice.Resize(output_matrix_shape); col.Resize(col_matrix_shape); math::matmul(*filter, true, out_slice, false, T(1.0), &col, T(0.0), device_context); // col2im Tensor in_grad_slice = input_grad->Slice(i, i + 1); in_grad_slice.Resize(input_shape); col.Resize(col_shape); col2im(in_grad_slice, col, strides[0], strides[1], paddings[0], paddings[1], device_context); // im2col Tensor in_slice = input->Slice(i, i + 1); in_slice.Resize(input_shape); col.Resize(col_shape); im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1], device_context); // gemm col.Resize(col_matrix_shape); math::matmul(out_slice, false, col, true, T(1.0), filter_grad, T(1.0), device_context); } filter->Resize(filter_dims); filter_grad->Resize(filter_dims); } }; } // namespace operators } // namespace paddle