# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import six import paddle.fluid.core as core from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.nn as nn import paddle.nn.functional as F from paddle.fluid import compiler, Program, program_guard def ref_selu(x, scale=1.0507009873554804934193349852946, alpha=1.6732632423543772848170429916717): out = np.copy(x) out_flat = out.flatten() for i in range(out_flat.size): if out_flat[i] < 0: out_flat[i] = alpha * np.exp(out_flat[i]) - alpha out_flat[i] = scale * out_flat[i] out = out_flat.reshape(x.shape) return out class SeluTest(OpTest): def setUp(self): self.op_type = "selu" self.x_shape = [3, 5, 5, 10] self.dtype = np.float64 self.init_x_shape() self.init_dtype() alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 x = np.random.normal(size=self.x_shape).astype(self.dtype) # Since zero point in selu is not differentiable, avoid randomize # zero. x[np.abs(x) < 0.005] = 0.02 out = ref_selu(x, scale, alpha) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = { 'alpha': alpha, 'scale': scale, } def init_x_shape(self): pass def init_dtype(self): pass def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSeluAPI(unittest.TestCase): # test paddle.nn.SELU, paddle.nn.functional.selu def setUp(self): self.scale = 1.5 self.alpha = 2.0 self.x_np = np.random.normal(size=[3, 5, 5, 10]).astype(np.float64) # Since zero point in selu is not differentiable, avoid randomize # zero. self.x_np[np.abs(self.x_np) < 0.005] = 0.02 self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ else paddle.CPUPlace() def test_static_api(self): with paddle.static.program_guard(paddle.static.Program()): x = paddle.data('X', self.x_np.shape, self.x_np.dtype) out1 = F.selu(x, self.scale, self.alpha) selu = paddle.nn.SELU(self.scale, self.alpha) out2 = selu(x) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2]) out_ref = ref_selu(self.x_np, self.scale, self.alpha) for r in res: self.assertEqual(np.allclose(out_ref, r), True) def test_dygraph_api(self): paddle.disable_static(self.place) x = paddle.to_tensor(self.x_np) out1 = F.selu(x, self.scale, self.alpha) selu = paddle.nn.SELU(self.scale, self.alpha) out2 = selu(x) out_ref = ref_selu(self.x_np, self.scale, self.alpha) for r in [out1, out2]: self.assertEqual(np.allclose(out_ref, r.numpy()), True) paddle.enable_static() def test_fluid_api(self): with fluid.program_guard(fluid.Program()): x = fluid.data('X', self.x_np.shape, self.x_np.dtype) out = fluid.layers.selu(x, self.scale, self.alpha) exe = fluid.Executor(self.place) res = exe.run(feed={'X': self.x_np}, fetch_list=[out]) out_ref = ref_selu(self.x_np, self.scale, self.alpha) self.assertEqual(np.allclose(out_ref, res[0]), True) def test_errors(self): with paddle.static.program_guard(paddle.static.Program()): # The input type must be Variable. self.assertRaises(TypeError, F.selu, 1) # The input dtype must be float16, float32, float64. x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32') self.assertRaises(TypeError, F.selu, x_int32) # support the input dtype is float16 x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16') F.selu(x_fp16) if __name__ == "__main__": unittest.main()