// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/conv_op.h" namespace paddle { namespace operators { class DeformableConvOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("Input", "(Tensor) The input of deformable conv op. " "The shape of input is " "[N, channel_in, H, W]"); AddInput("Offset", "(Tensor) The input offset. " "The shape of the offset is " "[N, deformable_groups * kernel_w * kernel_h * 2, H, W"); AddInput("Mask", "(Tensor) The input mask. " "The shape of the mask is " "[N, deformable_groups * kernel_w * kernel_h, H, W]."); AddInput("Filter", "(Tensor) The Input Filter " "The shape of the wight is " "[num_filters, channel_in, kernel_h, kernel_w."); AddOutput("Output", "(Tensor) The output. " "The shape of the output tensor is " "[N, num_filters, out_height, out_width]]."); AddAttr>("strides", "(vector default:{1, 1}), the " "strides(h_stride, w_stride) of " "convolution operator.") .SetDefault({1, 1}); AddAttr>("paddings", "(vector default:{0,0}), the " "paddings(h_pad, w_pad) of " "convolution operator. ") .SetDefault({0, 0}); AddAttr>("dilations", "(vector default:{1, 1}), the " "dilations(h_dilation, w_dilation) of " "convolution operator.") .SetDefault({1, 1}); AddAttr( "groups", "(int default:1), the groups number of the convolution operator. " "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: " "when group=2, the first half of the filters is only connected to the " "first half of the input channels, while the second half of the " "filters " "is only connected to the second half of the input channels.") .SetDefault(1); AddAttr("deformable_groups", "(int default:1), the number of the deformable groups.") .SetDefault(1); AddAttr("im2col_step", "im2col maximum number of image per computation") .SetDefault(64); AddComment(R"DOC( **Deformable Convolution Operator** Compute 2-D deformable convolution on 4-D input. Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: $$ y(p) = \\sum_{k=1}^{K}{w_k * x(p + p_k + \\Delta p_k) * \\Delta m_k} $$ Where $$\\Delta p_k$$ and $$\Delta m_k$$ are the learnable offset and modulation scalar for the k-th location, respectively. Refer to 'Deformable ConvNets v2: More Deformable, Better Results ' Example: Input: Input shape: $(N, C_{in}, H_{in}, W_{in})$ Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ Offset shape: $(N, 2 * deformable_groups, * H_f * W_f, H_{out}, W_{out})$ Mask shape: $(N, deformable_groups * H_f * W_f, H_{out}, W_{out})$ Output: Output shape: $(N, C_{out}, H_{out}, W_{out})$ where $H_{out}, W_{out}$ must be equal to $H_{in}, W_{in}$ respectively. Where $$ H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\ W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1 $$ )DOC"); } }; class DeformableConvOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Input"), "Input(Input) of DeformableConvOp " "should not be null"); PADDLE_ENFORCE(ctx->HasInput("Offset"), "Input(Offset) of DeformableConvOp " "should not be null"); PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) of DeformableConvOp " "should not be null"); PADDLE_ENFORCE(ctx->HasInput("Filter"), "Input(Filter) of DeformableConvOp " "should not be null"); PADDLE_ENFORCE(ctx->HasOutput("Output"), "Output(Output) of DeformableConvOp " "should not be null."); auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); auto offset_dims = ctx->GetInputDim("Offset"); auto mask_dims = ctx->GetInputDim("Mask"); std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); std::vector dilations = ctx->Attrs().Get>("dilations"); int groups = ctx->Attrs().Get("groups"); int deformable_groups = ctx->Attrs().Get("deformable_groups"); int im2col_step = ctx->Attrs().Get("im2col_step"); PADDLE_ENFORCE(in_dims.size() == 4, "Conv input should be 4-D tensor, get %u", in_dims.size()); PADDLE_ENFORCE_EQ( in_dims.size(), filter_dims.size(), "Conv input dimension and filter dimension should be the same."); PADDLE_ENFORCE_EQ( in_dims.size() - strides.size(), 2U, "Conv input dimension and strides dimension should be consistent."); PADDLE_ENFORCE_EQ(paddings.size(), strides.size(), "Conv paddings dimension and Conv strides dimension " "should be the same."); PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups, "The number of input channels should be equal to filter " "channels * groups."); PADDLE_ENFORCE_EQ( filter_dims[0] % groups, 0, "The number of output channels should be divided by groups."); PADDLE_ENFORCE_EQ(filter_dims[0] % deformable_groups, 0, "The number of output channels should be " "divided by deformable groups."); if (in_dims[0] > im2col_step) { PADDLE_ENFORCE_EQ( in_dims[0] % im2col_step, 0U, "Input batchsize must be smaller than or divide im2col_step"); } for (size_t i = 0; i < strides.size(); ++i) { PADDLE_ENFORCE_GT(strides[i], 0U, "stride %d size incorrect", i); } for (size_t i = 0; i < dilations.size(); ++i) { PADDLE_ENFORCE_GT(dilations[i], 0U, "dilation %d size incorrect", i); } std::vector output_shape({in_dims[0], filter_dims[0]}); for (size_t i = 0; i < strides.size(); ++i) { output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i], paddings[i], strides[i])); } PADDLE_ENFORCE_EQ(output_shape[1] % deformable_groups, 0U, "output num_filter must divide deformable group size."); PADDLE_ENFORCE_EQ(output_shape[2], offset_dims[2], "output height must equal to offset map height."); PADDLE_ENFORCE_EQ(output_shape[3], offset_dims[3], "output width must equal to offset map width."); PADDLE_ENFORCE_EQ(offset_dims[1] % (filter_dims[2] * filter_dims[3]), 0U, "offset filter must divide deformable group size."); PADDLE_ENFORCE_EQ(offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]), deformable_groups, "offset filter must divide deformable group size."); PADDLE_ENFORCE_EQ(output_shape[2], mask_dims[2], "output height must equal to mask map height."); PADDLE_ENFORCE_EQ(output_shape[3], mask_dims[3], "output width must equal to mask map width."); PADDLE_ENFORCE_EQ(mask_dims[1] % (filter_dims[2] * filter_dims[3]), 0U, "mask filter must divide deformable group size."); PADDLE_ENFORCE_EQ(mask_dims[1] / (filter_dims[2] * filter_dims[3]), deformable_groups, "mask filter must divide deformable group size."); ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType(ctx.Input("Input")->type(), ctx.device_context()); } }; class DeformableConvGradOpDescMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: std::unique_ptr Apply() const override { std::unique_ptr op(new framework::OpDesc()); op->SetType("deformable_conv_grad"); op->SetInput("Input", Input("Input")); op->SetInput("Filter", Input("Filter")); op->SetInput("Offset", Input("Offset")); op->SetInput("Mask", Input("Mask")); op->SetInput(framework::GradVarName("Output"), OutputGrad("Output")); op->SetOutput(framework::GradVarName("Input"), InputGrad("Input")); op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter")); op->SetOutput(framework::GradVarName("Offset"), InputGrad("Offset")); op->SetOutput(framework::GradVarName("Mask"), InputGrad("Mask")); op->SetAttrMap(Attrs()); return op; } }; class DeformableConvGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); auto offset_dims = ctx->GetInputDim("Offset"); auto mask_dims = ctx->GetInputDim("Mask"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Output")), "the gradient of output(Out) must not be null"); if (ctx->HasOutput(framework::GradVarName("Input"))) { ctx->SetOutputDim(framework::GradVarName("Input"), in_dims); } if (ctx->HasOutput(framework::GradVarName("Filter"))) { ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims); } if (ctx->HasOutput(framework::GradVarName("Offset"))) { ctx->SetOutputDim(framework::GradVarName("Offset"), offset_dims); } if (ctx->HasOutput(framework::GradVarName("Mask"))) { ctx->SetOutputDim(framework::GradVarName("Mask"), mask_dims); } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType(ctx.Input("Input")->type(), ctx.device_context()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(deformable_conv, ops::DeformableConvOp, ops::DeformableConvOpMaker, ops::DeformableConvGradOpDescMaker); REGISTER_OPERATOR(deformable_conv_grad, ops::DeformableConvGradOp);