# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import warnings import inspect from .. import core from ..framework import Variable, unique_name from .layer_function_generator import OpProtoHolder _supported_int_dtype_ = [ core.VarDesc.VarType.UINT8, core.VarDesc.VarType.INT8, core.VarDesc.VarType.INT16, core.VarDesc.VarType.INT32, core.VarDesc.VarType.INT64, ] compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__'] EXPRESSION_MAP = { "__add__": "A + B", "__radd__": "A += B", "__sub__": "A - B", "__rsub__": "A -= B", "__mul__": "A * B", "__rmul__": "A *= B", "__div__": "A / B", "__truediv__": "A / B", "__rdiv__": "A /= B", "__rtruediv__": "A /= B", "__pow__": "A ** B", "__rpow__": "A **= B", "__floordiv__": "A //B", "__mod__": "A % B", "__eq__": "A == B", "__ne__": "A != B", "__lt__": "A < B", "__le__": "A <= B", "__gt__": "A > B", "__ge__": "A >= B" } _already_patch_variable = False def monkey_patch_variable(): def unique_tmp_name(): return unique_name.generate("tmp") def safe_get_dtype(var): try: dtype = var.dtype except: raise ValueError("Cannot get data type from %s", var.name) return dtype def current_block(var): return var.block.program.current_block() def create_new_tmp_var(block, dtype): tmp_name = unique_tmp_name() return block.create_var(name=tmp_name, dtype=dtype) def create_tensor(block, value, dtype, shape): value = float(value) var = create_new_tmp_var(block, dtype) block.append_op( type="fill_constant", outputs={'Out': [var]}, attrs={ 'dtype': var.dtype, 'shape': shape, 'value': value, 'force_cpu': False }, stop_gradient=True) var.stop_gradient = True return var def create_scalar(block, value, dtype): return create_tensor(block, value, dtype, shape=[1]) def create_tensor_with_batchsize(ref_var, value, dtype): assert isinstance(ref_var, Variable) value = float(value) block = current_block(ref_var) var = create_new_tmp_var(block, dtype) batch_dim = -1 out_shape = [] for i, d in enumerate(ref_var.shape): if d < 0: if batch_dim < 0: batch_dim = i out_shape.append(d) else: out_shape.append(1) else: out_shape.append(d) assert batch_dim != -1 block.append_op( type='fill_constant_batch_size_like', outputs={'Out': [var]}, inputs={'Input': [ref_var]}, attrs={ 'shape': out_shape, 'value': value, 'input_dim_idx': batch_dim, 'output_dim_idx': batch_dim }, stop_gradient=True) var.stop_gradient = True return var def astype(self, dtype): """ **Notes**: **The variable must be a** :ref:`api_fluid_Tensor` Cast a variable to a specified data type. Args: self(Variable): The source variable dtype: The target data type Returns: Variable: Variable with new dtype Examples: In Static Graph Mode: .. code-block:: python import paddle.fluid as fluid startup_prog = fluid.Program() main_prog = fluid.Program() with fluid.program_guard(startup_prog, main_prog): original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32') new_variable = original_variable.astype('int64') print("new var's dtype is: {}".format(new_variable.dtype)) In Dygraph Mode: .. code-block:: python import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): original_variable = fluid.dygraph.to_variable(x) print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype)) new_variable = original_variable.astype('int64') print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype)) """ block = current_block(self) out = create_new_tmp_var(block, dtype) block.append_op( type="cast", inputs={"X": [self]}, outputs={"Out": [out]}, attrs={"in_dtype": self.dtype, "out_dtype": out.dtype}) return out def _scalar_op_(var, scale, bias): block = current_block(var) out = create_new_tmp_var(block, var.dtype) block.append_op( type="scale", inputs={"X": [var]}, outputs={"Out": [out]}, attrs={"scale": scale, "bias": bias}) return out def _neg_(var): return _scalar_op_(var, -1.0, 0.0) def _scalar_add_(var, value): return _scalar_op_(var, 1.0, value) def _scalar_sub_(var, value): return _scalar_op_(var, 1.0, -value) def _scalar_rsub_(var, value): return _scalar_op_(var, -1.0, value) def _scalar_mul_(var, value): return _scalar_op_(var, value, 0.0) def _scalar_div_(var, value): return _scalar_op_(var, 1.0 / value, 0.0) def _binary_creator_(method_name, op_type, reverse=False, scalar_method=None): def __impl__(self, other_var): # 1. scalar exists cases # we need combine the tensor.dtype and scalar.dtype, cast correct object if isinstance(other_var, float): # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float if self.dtype in _supported_int_dtype_: self = astype(self, 'float32') # here use `scale` replace `elementwise` to get better performance # but only +, -, *, / can use this method if scalar_method is not None: return scalar_method(self, other_var) elif isinstance(other_var, int): # in all cases(+, -, *, /, **, //, %), we can cast it to float # because the output tensor.dtype depend on the type of input tensor other_var = float(other_var) # division is a special case # NOTE(chenweihang): because we cast tensor to float32 instead float64, # the division result can only guarantee the numerical accuracy of 6 digits # after the decimal point. The result of numpy calculation is of float64 type, # so the calculation result here and the calculation result of numpy are # different after 6 decimal point. If necessary, we can also use float64 here. # torch's behavior here is consistent with ours if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_: self = astype(self, 'float32') # here use `scale` replace `elementwise` to get better performance # but only +, -, *, / can use this method if scalar_method is not None: return scalar_method(self, other_var) else: # do nothing pass # 2. create variable for scalar lhs_dtype = safe_get_dtype(self) if not isinstance(other_var, Variable): if reverse: has_batch_size = False for elem in self.shape: if elem < 0: has_batch_size = True break if not has_batch_size: other_var = create_tensor( current_block(self), other_var, dtype=lhs_dtype, shape=self.shape) else: other_var = create_tensor_with_batchsize( self, other_var, lhs_dtype) else: # add fill_op to current_block other_var = create_scalar( current_block(self), value=other_var, dtype=lhs_dtype) # 3. unify right var type to left var rhs_dtype = safe_get_dtype(other_var) if lhs_dtype != rhs_dtype: other_var = astype(other_var, lhs_dtype) if reverse: tmp = self self = other_var other_var = tmp # NOTE(zhiqiu): the output of compare operator should be bool. if method_name in compare_ops: out = create_new_tmp_var(current_block(self), dtype="bool") else: out = create_new_tmp_var(current_block(self), dtype=lhs_dtype) axis = -1 if other_var.shape[0] == -1: stack = inspect.stack()[1] file_name = stack[1] line_num = stack[2] warnings.warn( "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. " "If your code works well in the older versions but crashes in this version, try to use " "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future." % (file_name, line_num, EXPRESSION_MAP[method_name], op_type, op_type, EXPRESSION_MAP[method_name])) current_block(self).append_op( type=op_type, inputs={'X': [self], 'Y': [other_var]}, outputs={'Out': out}, attrs={'axis': axis}) return out comment = OpProtoHolder.instance().get_op_proto(op_type).comment __impl__.__doc__ = """ {0} Args: self(Variable): left hand variable other_var(Variable|float|int): right hand variable Returns: Variable """.format(comment) __impl__.__name__ = method_name return __impl__ variable_methods = [ # b=-a ('__neg__', _neg_), ('astype', astype), ('__add__', _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)), # a+b == b+a. Do not need to reverse explicitly ('__radd__', _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)), ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)), ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)), ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)), # a*b == b*a. Do not need to reverse explicitly ('__rmul__', _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)), ('__div__', _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)), ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div', False, _scalar_div_)), ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True, None)), ('__rtruediv__', _binary_creator_('__rtruediv__', 'elementwise_div', True, None)), ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False, None)), ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True, None)), ('__floordiv__', _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)), ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False, None)), # for logical compare ('__eq__', _binary_creator_('__eq__', 'equal', False, None)), ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)), ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)), ('__le__', _binary_creator_('__le__', 'less_equal', False, None)), ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)), ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)) ] global _already_patch_variable if not _already_patch_variable: for method in variable_methods: method_name = method[0] method_impl = method[1] setattr(Variable, method_name, method_impl) else: import paddle.tensor variabel_methods = paddle.tensor.linalg.__all__ + \ paddle.tensor.math.__all__ + \ paddle.tensor.logic.__all__ + \ paddle.tensor.manipulation.__all__ + \ paddle.tensor.search.__all__ + \ paddle.tensor.stat.__all__ + \ paddle.tensor.attribute.__all__ for method_name in variabel_methods: if hasattr(Variable, method_name): continue method_impl = getattr(paddle.tensor, method_name, None) if method_impl: setattr(Variable, method_name, method_impl) _already_patch_variable = True