# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid import core def get_random_images_and_labels(image_shape, label_shape): image = np.random.random(size=image_shape).astype('float32') label = np.random.random(size=label_shape).astype('int64') return image, label def sample_generator_creator(batch_size, batch_num): def __reader__(): for _ in range(batch_num * batch_size): image, label = get_random_images_and_labels([784], [1]) yield image, label return __reader__ def batch_generator_creator(batch_size, batch_num): def __reader__(): for _ in range(batch_num): batch_image, batch_label = get_random_images_and_labels( [batch_size, 784], [batch_size, 1]) yield batch_image, batch_label return __reader__ class TestDygraphhDataLoader(unittest.TestCase): def setUp(self): self.batch_size = 8 self.batch_num = 4 self.epoch_num = 1 self.capacity = 5 def test_single_process_reader(self): with fluid.dygraph.guard(): loader = fluid.io.DataLoader.from_generator( capacity=self.capacity, iterable=False, use_multiprocess=False) loader.set_sample_generator( sample_generator_creator(self.batch_size, self.batch_num), batch_size=self.batch_size, places=fluid.CPUPlace()) for _ in range(self.epoch_num): for image, label in loader(): relu = fluid.layers.relu(image) self.assertEqual(image.shape, [self.batch_size, 784]) self.assertEqual(label.shape, [self.batch_size, 1]) self.assertEqual(relu.shape, [self.batch_size, 784]) def test_sample_genarator(self): with fluid.dygraph.guard(): loader = fluid.io.DataLoader.from_generator( capacity=self.capacity, use_multiprocess=True) loader.set_sample_generator( sample_generator_creator(self.batch_size, self.batch_num), batch_size=self.batch_size, places=fluid.CPUPlace()) for _ in range(self.epoch_num): for image, label in loader(): relu = fluid.layers.relu(image) self.assertEqual(image.shape, [self.batch_size, 784]) self.assertEqual(label.shape, [self.batch_size, 1]) self.assertEqual(relu.shape, [self.batch_size, 784]) def test_batch_genarator(self): with fluid.dygraph.guard(): loader = fluid.io.DataLoader.from_generator( capacity=self.capacity, use_multiprocess=True) loader.set_batch_generator( batch_generator_creator(self.batch_size, self.batch_num), places=fluid.CPUPlace()) for _ in range(self.epoch_num): for image, label in loader(): relu = fluid.layers.relu(image) self.assertEqual(image.shape, [self.batch_size, 784]) self.assertEqual(label.shape, [self.batch_size, 1]) self.assertEqual(relu.shape, [self.batch_size, 784]) if __name__ == '__main__': unittest.main()