# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from test_dist_base import TestDistBase class TestDistMnistNCCL2FleetApi(TestDistBase): def _setup_config(self): self._sync_mode = True self._use_reduce = False self._use_reader_alloc = False self._nccl2_mode = True self._gpu_fleet_api = True self._sync_batch_norm = True def test_dist_train(self): import paddle.fluid as fluid if fluid.core.is_compiled_with_cuda(): self.check_with_place("dist_mnist.py", delta=1e-5) class FleetCollectiveTest(unittest.TestCase): def test_open_sync_batch_norm(self): import paddle.fluid as fluid import paddle.fluid.incubate.fleet.base.role_maker as role_maker from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy data = fluid.layers.data(name='X', shape=[1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) optimizer = fluid.optimizer.AdamOptimizer() role = role_maker.UserDefinedCollectiveRoleMaker(0, ['127.0.0.1:6170']) fleet.init(role) dist_strategy = DistributedStrategy() dist_strategy.sync_batch_norm = True dist_optimizer = fleet.distributed_optimizer( optimizer, strategy=dist_strategy) dist_optimizer.minimize(loss) self.assertEqual(dist_strategy.exec_strategy.num_threads, 1) if __name__ == "__main__": unittest.main()