/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/concat_op.h" #include #include #include #ifdef PADDLE_WITH_MKLDNN #include #endif #ifdef PADDLE_WITH_XPU namespace paddle { namespace operators { using Tensor = framework::Tensor; template class ConcatXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto ins = ctx.MultiInput("X"); framework::Tensor* out = ctx.Output("Out"); int axis = ctx.Attr("axis"); PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument( "The input should not be null.")); PADDLE_ENFORCE_NE(ctx.HasInput("AxisTensor"), true, platform::errors::InvalidArgument( "XPU donot surpport AxisTensor for now")); axis = ComputeAxis(static_cast(axis), static_cast(ins[0]->dims().size())); PADDLE_ENFORCE_GE( axis, 0, platform::errors::InvalidArgument("concat: axis shoud >= 0!")); PADDLE_ENFORCE_LT(axis, ins[0]->dims().size(), platform::errors::InvalidArgument( "concat: axis shoud < ins[0]->dims()!")); auto place = ctx.GetPlace(); out->mutable_data(place); std::vector choose_idx; int n = 0; for (unsigned int i = 0; i < ins.size(); ++i) { if (ins[i] && ins[i]->numel() > 0) { choose_idx.push_back(i); n++; } } PADDLE_ENFORCE_LE(n, 8, platform::errors::InvalidArgument( "XPU only surpport at most 8 tensors for now")); PADDLE_ENFORCE_GT( n, 0, platform::errors::InvalidArgument("No tensor need concat?")); int h = 1; int w_except_axis = 1; for (int i = 0; i < axis; ++i) { h *= (ins[choose_idx[0]]->dims())[i]; } for (int i = axis + 1; i < ins[0]->dims().size(); ++i) { w_except_axis *= (ins[choose_idx[0]]->dims())[i]; } for (int i = 1; i < n; ++i) { int hh = 1; int ww = 1; for (int j = 0; j < axis; ++j) { hh *= (ins[choose_idx[i]]->dims())[j]; } for (int j = axis + 1; j < ins[i]->dims().size(); ++j) { ww *= (ins[choose_idx[i]]->dims())[j]; } PADDLE_ENFORCE_EQ(hh, h, platform::errors::InvalidArgument( "concat: h should be eual!")); PADDLE_ENFORCE_EQ(ww, w_except_axis, platform::errors::InvalidArgument( "concat: w should be eual except for axis!")); } auto& dev_ctx = ctx.template device_context(); std::unique_ptr in_w_host(new int[n]); std::unique_ptr ptrs(new const float*[n]); for (int i = 0; i < n; ++i) { ptrs[i] = ins[choose_idx[i]]->data(); in_w_host[i] = w_except_axis * (ins[choose_idx[i]]->dims())[axis]; } int r = xpu::concat(dev_ctx.x_context(), h, (const int*)in_w_host.get(), n, (const float**)ptrs.get(), out->data()); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, platform::errors::External( "XPU API return wrong value[%d], please check whether " "Baidu Kunlun Card is properly installed.", r)); } }; template class ConcatGradXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { auto* out_grad = ctx.Input(framework::GradVarName("Out")); auto ins = ctx.MultiInput("X"); auto out_var_names = ctx.OutputNames(framework::GradVarName("X")); auto outs = ctx.MultiOutput(framework::GradVarName("X")); { auto dx = outs; auto x = ins; for (size_t i = 0; i < dx.size(); ++i) { if (dx[i] != nullptr) { dx[i]->set_lod(x[i]->lod()); } } } PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument( "The input should not be null.")); auto axis = ctx.Attr("axis"); if (ctx.HasInput("AxisTensor")) { auto* axis_tensor = ctx.Input("AxisTensor"); axis = GetDataFromTensor(axis_tensor)[0]; } axis = ComputeAxis(static_cast(axis), static_cast(ins[0]->dims().size())); // get output tensor that the name is not kEmptyVarName std::vector outputs; for (size_t j = 0; j < outs.size(); ++j) { if (out_var_names[j] != framework::kEmptyVarName && outs[j]->numel() != 0UL) { outs[j]->mutable_data(ctx.GetPlace()); outputs.push_back(outs[j]); } else { outputs.push_back(nullptr); } } PADDLE_ENFORCE_GE(axis, 0, platform::errors::InvalidArgument( "concat_grad: axis shoud >= 0!")); PADDLE_ENFORCE_LT(axis, out_grad->dims().size(), platform::errors::InvalidArgument( "concat_grad: axis shoud < ins[0]->dims()!")); auto out_grad_stride = framework::stride_numel(out_grad->dims()); int n = outputs.size(); PADDLE_ENFORCE_LE(n, 16, platform::errors::InvalidArgument( "XPU only surpport at most 16 tensors for now")); int h = out_grad_stride[0] / out_grad_stride[axis]; auto& dev_ctx = ctx.template device_context(); std::unique_ptr in_w_host(new int[n]); std::unique_ptr ptrs(new float*[n]); for (int i = 0; i < n; ++i) { auto out_stride = framework::stride_numel(outputs[i]->dims()); ptrs[i] = outputs[i]->data(); in_w_host[i] = out_stride[axis]; } int r = xpu::concat_grad(dev_ctx.x_context(), h, in_w_host.get(), n, reinterpret_cast(ptrs.get()), out_grad->data()); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, platform::errors::External( "XPU API return wrong value[%d], please check whether " "Baidu Kunlun Card is properly installed.", r)); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_XPU_KERNEL( concat, ops::ConcatXPUKernel); REGISTER_OP_XPU_KERNEL( concat_grad, ops::ConcatGradXPUKernel); #endif