// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/cpu_quantize_pass.h" #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/string/pretty_log.h" namespace paddle { namespace framework { namespace ir { namespace { void UnlinkNodes(ir::Node* a, ir::Node* b) { a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b), a->outputs.end()); b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a), b->inputs.end()); } } // namespace enum { U8_MAX = 255, S8_MAX = 127 }; using EigenVectorArrayMap = Eigen::Map>; using string::PrettyLogDetail; void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input, std::string input_name, double scale_to_one, bool is_unsigned, std::string scale_attr_name) const { unsigned max = is_unsigned ? U8_MAX : S8_MAX; float scale = scale_to_one * max; // Create quantize output variable VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out")); auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc); // create a quantize op node OpDesc q_desc; q_desc.SetType("quantize"); q_desc.SetInput("Input", std::vector({input->Name()})); q_desc.SetOutput("Output", std::vector({quantize_out_node->Name()})); q_desc.SetAttr("Scale", scale); q_desc.SetAttr("is_negative_input", !is_unsigned); auto quantize_op = g->CreateOpNode(&q_desc); // OpDesc will be copied. // update op's input op->Op()->SetInput(input_name, std::vector({quantize_out_node->Name()})); // link quantize op UnlinkNodes(input, op); IR_NODE_LINK_TO(input, quantize_op); IR_NODE_LINK_TO(quantize_op, quantize_out_node); IR_NODE_LINK_TO(quantize_out_node, op); if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale); } void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output, std::string output_name, double scale_to_one, bool is_unsigned, std::string scale_attr_name) const { unsigned max = is_unsigned ? U8_MAX : S8_MAX; float scale = scale_to_one * max; // Create dequantize input variable VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in")); auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc); // create a dequantize op node for output. OpDesc deq_desc; deq_desc.SetType("dequantize"); deq_desc.SetInput("Input", std::vector({dequantize_in_node->Name()})); deq_desc.SetOutput("Output", std::vector({output->Name()})); deq_desc.SetAttr("Scale", scale); auto dequantize_op = g->CreateOpNode(&deq_desc); // OpDesc will be copied. // update op's output op->Op()->SetOutput(output_name, std::vector({dequantize_in_node->Name()})); // link dequantize op UnlinkNodes(op, output); IR_NODE_LINK_TO(op, dequantize_in_node); IR_NODE_LINK_TO(dequantize_in_node, dequantize_op); IR_NODE_LINK_TO(dequantize_op, output); if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale); } void CPUQuantizePass::QuantizeConv(Graph* graph, bool with_residual_data) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::ConvResidual conv_pattern{pattern, name_scope_}; conv_pattern(with_residual_data); int quantize_conv_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize conv2d op"; GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern); auto* conv_op_desc = conv_op->Op(); // skip if should not be quantized if (!conv_op_desc->HasAttr("use_quantizer") || !boost::get(conv_op_desc->GetAttr("use_quantizer"))) return; GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern); GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern); GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); auto input_scale = scales[conv_input->Name()].second.data()[0]; bool is_input_unsigned = scales[conv_input->Name()].first; QuantizeInput(g, conv_op, conv_input, "Input", input_scale, is_input_unsigned, "Scale_in"); auto filter_scale_tensor = scales[conv_filter->Name()].second; EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data(), filter_scale_tensor.numel(), 1}; eigen_tensor *= static_cast(S8_MAX); std::vector filter_scale{ filter_scale_tensor.data(), filter_scale_tensor.data() + filter_scale_tensor.numel()}; conv_op->Op()->SetAttr("Scale_weights", filter_scale); if (with_residual_data) { GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data, conv_pattern); auto residual_scale = scales[conv_residual_data->Name()].second.data()[0]; bool is_residual_unsigned = scales[conv_residual_data->Name()].first; QuantizeInput(g, conv_op, conv_residual_data, "ResidualData", residual_scale, is_residual_unsigned, "Scale_in_eltwise"); } auto output_scale = scales[conv_output->Name()].second.data()[0]; bool is_output_unsigned = scales[conv_output->Name()].first; DequantizeOutput(g, conv_op, conv_output, "Output", output_scale, is_output_unsigned, "Scale_out"); ++quantize_conv_count; }; gpd(graph, handler); AddStatis(quantize_conv_count); std::stringstream msg_ss; msg_ss << "--- quantized " << quantize_conv_count << " conv2d ops"; if (with_residual_data) msg_ss << " with residual connection"; PrettyLogDetail(msg_ss.str().c_str()); } void CPUQuantizePass::QuantizePool(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Pool pool_pattern{pattern, name_scope_}; pool_pattern(); int quantize_pool_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize pool2d op"; GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern); auto* pool_op_desc = pool_op->Op(); // skip if should not be quantized if (!pool_op_desc->HasAttr("use_quantizer") || !boost::get(pool_op_desc->GetAttr("use_quantizer"))) return; GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern); GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); auto input_scale = scales[pool_input->Name()].second.data()[0]; bool is_input_unsigned = scales[pool_input->Name()].first; QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned); auto output_scale = scales[pool_output->Name()].second.data()[0]; bool is_output_unsigned = scales[pool_output->Name()].first; DequantizeOutput(g, pool_op, pool_output, "Out", output_scale, is_output_unsigned); ++quantize_pool_count; }; gpd(graph, handler); AddStatis(quantize_pool_count); PrettyLogDetail("--- quantized %d pool2d ops", quantize_pool_count); } std::unique_ptr CPUQuantizePass::ApplyImpl( std::unique_ptr graph) const { VLOG(3) << "Quantizing the graph."; PADDLE_ENFORCE(graph.get()); FusePassBase::Init(name_scope_, graph.get()); PADDLE_ENFORCE(param_scope()); QuantizeConv(graph.get(), false /* with_residual_data */); QuantizeConv(graph.get(), true /* with_residual_data */); QuantizePool(graph.get()); return graph; } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass) .RequirePassAttr("quant_var_scales");