# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ..wrapped_decorator import contextmanager from .. import core from .. import executor from .. import framework from .. import io from .. import parallel_executor from .. import unique_name from .trainer import check_and_get_place __all__ = ['Inferencer', ] class Inferencer(object): """ Inferencer High Level API. Args: infer_func (Python func): Infer function that will return predict Variable param_path (str): The path where the inference model is saved by fluid.io.save_params place (Place): place to do the inference parallel (bool): use parallel_executor to run the inference, it will use multi CPU/GPU. Examples: .. code-block:: python def inference_program(): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) return y_predict place = fluid.CPUPlace() inferencer = fluid.Inferencer( infer_func=inference_program, param_path="/tmp/model", place=place) """ def __init__(self, infer_func, param_path, place=None, parallel=False): self.param_path = param_path self.scope = core.Scope() self.parallel = parallel self.place = check_and_get_place(place) self.inference_program = framework.Program() with framework.program_guard(self.inference_program): with unique_name.guard(): self.predict_var = infer_func() with self._prog_and_scope_guard(): # load params from param_path into scope io.load_params(executor.Executor(self.place), param_path) if parallel: with self._prog_and_scope_guard(): self.exe = parallel_executor.ParallelExecutor( use_cuda=isinstance(self.place, core.CUDAPlace), loss_name=self.predict_var.name) else: self.exe = executor.Executor(self.place) self.inference_program = self.inference_program.clone(for_test=True) def infer(self, inputs, return_numpy=True): """ Do Inference for Inputs Args: inputs (map): a map of {"input_name": input_var} that will be feed into the inference program return_numpy (bool): transform return value into numpy or not Returns: Tensor or Numpy: the predict value of the inference model for the inputs Examples: .. code-block:: python tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32") results = inferencer.infer({'x': tensor_x}) """ if not isinstance(inputs, dict): raise ValueError( "inputs should be a map of {'input_name': input_var}") with self._prog_and_scope_guard(): results = self.exe.run(feed=inputs, fetch_list=[self.predict_var.name], return_numpy=return_numpy) return results @contextmanager def _prog_and_scope_guard(self): with framework.program_guard(main_program=self.inference_program): with executor.scope_guard(self.scope): yield