// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/extension.h" template __global__ void relu_cuda_forward_kernel(const data_t* x, data_t* y, const int num) { int gid = blockIdx.x * blockDim.x + threadIdx.x; for (int i = gid; i < num; i += blockDim.x * gridDim.x) { y[i] = x[i] > static_cast(0.) ? x[i] : static_cast(0.); } } template __global__ void relu_cuda_backward_kernel(const data_t* dy, const data_t* y, data_t* dx, const int num) { int gid = blockIdx.x * blockDim.x + threadIdx.x; for (int i = gid; i < num; i += blockDim.x * gridDim.x) { dx[i] = dy[i] * (y[i] > static_cast(0.) ? static_cast(1.) : static_cast(0.)); } } std::vector relu_cuda_forward(const paddle::Tensor& x) { auto out = paddle::Tensor(paddle::PlaceType::kGPU); out.reshape(x.shape()); int numel = x.size(); int block = 512; int grid = (numel + block - 1) / block; PD_DISPATCH_FLOATING_AND_HALF_TYPES( x.type(), "relu_cuda_forward_kernel", ([&] { auto cpu_input = x.copy_to(paddle::PlaceType::kCPU); auto gpu_input = cpu_input.copy_to(paddle::PlaceType::kGPU); relu_cuda_forward_kernel<<>>( gpu_input.data(), out.mutable_data(x.place()), numel); })); return {out}; } std::vector relu_cuda_backward(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out) { auto grad_x = paddle::Tensor(paddle::PlaceType::kGPU); grad_x.reshape(x.shape()); int numel = out.size(); int block = 512; int grid = (numel + block - 1) / block; PD_DISPATCH_FLOATING_AND_HALF_TYPES( out.type(), "relu_cuda_backward_kernel", ([&] { relu_cuda_backward_kernel<<>>( grad_out.data(), out.data(), grad_x.mutable_data(x.place()), numel); })); return {grad_x}; }