/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/pybind/imperative.h" #include #include #include #include #include #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/imperative/profiler.h" #include "paddle/fluid/imperative/tracer.h" #include "paddle/fluid/imperative/type_defs.h" #include "paddle/fluid/pybind/pybind_boost_headers.h" namespace paddle { namespace pybind { class Layer : public imperative::Layer { public: using imperative::Layer::Layer; // Inherit constructors std::vector> Forward( const std::vector> &inputs) override { PYBIND11_OVERLOAD(std::vector>, Layer, Forward, inputs); // NOLINT } }; class PYBIND11_HIDDEN PyOpBase : public imperative::OpBase { public: using imperative::OpBase::OpBase; // Inherit constructors PyOpBase(const std::string &name) : OpBase(name) {} }; // Bind Methods void BindImperative(pybind11::module *m_ptr) { namespace py = ::pybind11; auto &m = *m_ptr; py::class_ backward_strategy( m, "BackwardStrategy", R"DOC()DOC"); backward_strategy.def(py::init()) .def_property("sort_sum_gradient", [](const imperative::detail::BackwardStrategy &self) { return self.sorted_sum_gradient_; }, [](imperative::detail::BackwardStrategy &self, bool sorted_sum_gradient) { self.sorted_sum_gradient_ = sorted_sum_gradient; }); m.def("start_imperative_gperf_profiler", []() { imperative::StartProfile(); }); m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); }); py::class_>( m, "VarBase", R"DOC()DOC") .def( py::init, const paddle::platform::CPUPlace, bool, bool>()) .def( py::init, const paddle::platform::CUDAPlace, bool, bool>()) .def("_run_backward", [](imperative::VarBase &self, const imperative::detail::BackwardStrategy &bckst) { self.RunBackward(bckst); }) .def("_grad_name", &imperative::VarBase::GradName) .def("_grad_value", &imperative::VarBase::GradValue) .def("_clear_gradient", &imperative::VarBase::ClearGradient) .def("_grad_ivar", [](const imperative::VarBase &self) { return self.grads_; }, py::return_value_policy::reference) .def("_copy_to", [](const imperative::VarBase &self, const platform::CPUPlace &place, bool blocking) { return self.NewVarBase(place, blocking).release(); }, py::return_value_policy::take_ownership) .def("_copy_to", [](const imperative::VarBase &self, const platform::CUDAPlace &place, bool blocking) { return self.NewVarBase(place, blocking).release(); }, py::return_value_policy::take_ownership) .def("value", [](const imperative::VarBase &self) { return self.var_.get(); }, py::return_value_policy::reference) .def_property("name", &imperative::VarBase::Name, &imperative::VarBase::SetName) .def_property_readonly("shape", &imperative::VarBase::Shape) .def_property_readonly("dtype", &imperative::VarBase::DataType) .def_property("persistable", &imperative::VarBase::IsPersistable, &imperative::VarBase::SetPersistable) .def_property("stop_gradient", &imperative::VarBase::IsStopGradient, &imperative::VarBase::SetStopGradient); py::class_(m, "OpBase", R"DOC()DOC") .def(py::init()) .def("register_backward_hooks", [](imperative::OpBase &self, const py::object &callable) { self.RegisterBackwardHooks(callable); }) .def_property("_trace_id", [](const imperative::OpBase &self) { py::gil_scoped_release release; return self.trace_id_; }, [](imperative::OpBase &self, int trace_id) { py::gil_scoped_release release; self.trace_id_ = trace_id; }, py::return_value_policy::reference) .def_property_readonly("type", &imperative::OpBase::Type); py::class_ layer(m, "Layer"); layer.def(py::init<>()) .def("forward", [](imperative::Layer &self, const std::vector> &inputs) { return self.Forward(inputs); }); py::class_(*m, "Tracer", "") .def("__init__", [](imperative::Tracer &self, framework::BlockDesc *root_block) { new (&self) imperative::Tracer(root_block); }) .def("trace", [](imperative::Tracer &self, imperative::OpBase *op, const imperative::VarBasePtrMap &inputs, imperative::VarBasePtrMap *outputs, framework::AttributeMap attrs_map, const platform::CPUPlace expected_place, const bool stop_gradient = false) { py::gil_scoped_release release; self.Trace(op, inputs, outputs, attrs_map, expected_place, stop_gradient); }) .def("trace", [](imperative::Tracer &self, imperative::OpBase *op, const imperative::VarBasePtrMap &inputs, imperative::VarBasePtrMap *outputs, framework::AttributeMap attrs_map, const platform::CUDAPlace expected_place, const bool stop_gradient = false) { py::gil_scoped_release release; self.Trace(op, inputs, outputs, attrs_map, expected_place, stop_gradient); }); // define parallel context py::class_ parallel_strategy( m, "ParallelStrategy", ""); parallel_strategy.def(py::init()) .def_property( "nranks", [](const imperative::ParallelStrategy &self) { return self.nranks_; }, [](imperative::ParallelStrategy &self, int nranks) { self.nranks_ = nranks; }) .def_property("local_rank", [](const imperative::ParallelStrategy &self) { return self.local_rank_; }, [](imperative::ParallelStrategy &self, int local_rank) { self.local_rank_ = local_rank; }) .def_property( "trainer_endpoints", [](const imperative::ParallelStrategy &self) { return self.trainer_endpoints_; }, [](imperative::ParallelStrategy &self, std::vector eps) { self.trainer_endpoints_ = eps; }) .def_property("current_endpoint", [](const imperative::ParallelStrategy &self) { return self.current_endpoint_; }, [](imperative::ParallelStrategy &self, const std::string &ep) { self.current_endpoint_ = ep; }); #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) py::class_ nccl_ctx(m, "NCCLParallelContext"); nccl_ctx .def(py::init()) .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); }); #endif } } // namespace pybind } // namespace paddle