/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/platform/hostdevice.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template using EigenVector = framework::EigenVector; template struct CheckLabelValue { HOSTDEVICE T operator()(const T& val) const { PADDLE_ASSERT(val == static_cast(0) || val == static_cast(1)); } }; template struct ModifiedHuberLossForward { HOSTDEVICE T operator()(const T& val) const { if (val < -1) { return -4 * val; } else if (val < 1) { return (1 - val) * (1 - val); } else { return static_cast(0); } } }; template class ModifiedHuberLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("X"); auto* in1 = context.Input("Y"); auto* out0 = context.Output("intermediate_val"); auto* out1 = context.Output("Out"); out0->mutable_data(context.GetPlace()); out1->mutable_data(context.GetPlace()); auto place = context.GetEigenDevice(); auto x = EigenVector::Flatten(*in0); auto y = EigenVector::Flatten(*in1); // make sure value's of Y in {0, 1} y.unaryExpr(CheckLabelValue()); auto inter_val = EigenVector::Flatten(*out0); // scale y to {-1, +1} and compute x * y inter_val.device(place) = x * (2 * y - static_cast(1)); auto loss = EigenVector::Flatten(*out1); loss.device(place) = inter_val.unaryExpr(ModifiedHuberLossForward()); } }; // Use thrust lib to unify cpu and gpu // CPU backward kernel template class ModifiedHuberLossGradCPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("X"); auto* in1 = context.Input("Y"); auto* in2 = context.Input("intermediate_val"); auto* in3 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); auto* out1 = context.Output(framework::GradVarName("X")); // loop inter_val (x<-1) (x<1) otherwise const T* p_inter_val = in2->data(); const T* p_out_grad = in3->data(); size_t counts = static_cast(framework::product(in2->dims())); if (out0) { T* p_x_grad = out0->mutable_data(context.GetPlace()); const T* p_y = in1->data(); ModifiedHuberLossBackward(p_inter_val, p_y, p_out_grad, p_x_grad, counts); } if (out1) { T* p_y_grad = out1->mutable_data(context.GetPlace()); const T* p_x = in0->data(); ModifiedHuberLossBackward(p_inter_val, p_x, p_out_grad, p_y_grad, counts); } } protected: void ModifiedHuberLossBackward(const T* p_inter_data, const T* p_in_data, const T* p_in_grad, T* p_out_grad, size_t counts) const { for (size_t i = 0; i < counts; ++i) { if (p_inter_data[i] < -1) { p_out_grad[i] = -4 * p_in_data[i] * p_in_grad[i]; } else if (p_inter_data[i] < 1) { p_out_grad[i] = -2 * (1 - p_inter_data[i]) * p_in_data[i] * p_in_grad[i]; } else { p_out_grad[i] = 0; } } } }; } // namespace operators } // namespace paddle