# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle from paddle import _C_ops from paddle.fluid import core from paddle.fluid.framework import _test_eager_guard class TestSparseCopy(unittest.TestCase): def test_copy_sparse_coo(self): with _test_eager_guard(): np_x = [[0, 1.0, 0], [2.0, 0, 0], [0, 3.0, 0]] np_values = [1.0, 2.0, 3.0] dense_x = paddle.to_tensor(np_x, dtype='float32') coo_x = dense_x.to_sparse_coo(2) np_x_2 = [[0, 3.0, 0], [2.0, 0, 0], [0, 3.0, 0]] dense_x_2 = paddle.to_tensor(np_x_2, dtype='float32') coo_x_2 = dense_x_2.to_sparse_coo(2) coo_x_2.copy_(coo_x, True) assert np.array_equal(np_values, coo_x_2.non_zero_elements().numpy()) def test_copy_sparse_csr(self): with _test_eager_guard(): np_x = [[0, 1.0, 0], [2.0, 0, 0], [0, 3.0, 0]] np_values = [1.0, 2.0, 3.0] dense_x = paddle.to_tensor(np_x, dtype='float32') csr_x = dense_x.to_sparse_csr() np_x_2 = [[0, 3.0, 0], [2.0, 0, 0], [0, 3.0, 0]] dense_x_2 = paddle.to_tensor(np_x_2, dtype='float32') csr_x_2 = dense_x_2.to_sparse_csr() csr_x_2.copy_(csr_x, True) assert np.array_equal(np_values, csr_x_2.non_zero_elements().numpy())