/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/math/math_function.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; template using EigenVector = framework::EigenVector; template using EigenMatrix = framework::EigenMatrix; enum SeqPoolType { AVERAGE = 0, SUM = 1, SQRT = 2, // square_root_n MAX = 3, LAST = 4, FIRST = 5 }; template class SequencePoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Input("X"); auto* out = context.Output("Out"); int strategy = context.Attr("strategy"); auto dims = in->dims(); auto lod = in->lod(); int64_t w = in->numel() / dims[0]; // InferShape by lod PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); PADDLE_ENFORCE_GE( dims[0], /*batch size = */ static_cast(lod[0].size() - 1), "The first dimension of Input(X) must be large than batch size."); dims[0] = lod[0].size() - 1; out->Resize({dims}); auto lod_level_0 = lod[0]; out->mutable_data(context.GetPlace()); auto place = context.GetEigenDevice(); for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { Tensor in_t = in->Slice(static_cast(lod_level_0[i]), static_cast(lod_level_0[i + 1])); Tensor out_t = out->Slice(i, i + 1); int64_t h = static_cast(lod_level_0[i + 1] - lod_level_0[i]); auto in_e = EigenMatrix::From(in_t, framework::make_ddim({h, w})); auto out_e = EigenVector::Flatten(out_t); switch (strategy) { case AVERAGE: out_e.device(place) = in_e.mean(Eigen::array({{0}})); break; case SUM: out_e.device(place) = in_e.sum(Eigen::array({{0}})); break; case SQRT: out_e.device(place) = in_e.sum(Eigen::array({{0}})) / std::sqrt(static_cast(h)); break; case LAST: out_e.device(place) = in_e.chip(h - 1, 0); break; case FIRST: out_e.device(place) = in_e.chip(0, 0); break; default: PADDLE_THROW("unsupported pooling strategy"); } } } }; template class SequencePoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Input("X"); auto* out_g = context.Input(framework::GradVarName("Out")); auto* in_g = context.Output(framework::GradVarName("X")); int strategy = context.Attr("strategy"); auto dims = in->dims(); auto lod = in->lod()[0]; int64_t w = in->numel() / dims[0]; in_g->mutable_data(context.GetPlace()); if (strategy > 2) { // set X@Grad be zero at first when strategy is LAST/FIRST/MAX math::SetConstant(context.device_context(), in_g, 0); } auto place = context.GetEigenDevice(); for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { auto in_g_t = in_g->Slice(static_cast(lod[i]), static_cast(lod[i + 1])); auto out_g_t = out_g->Slice(i, i + 1); int64_t h = static_cast(lod[i + 1] - lod[i]); auto in_g_e = EigenMatrix::From(in_g_t, {h, w}); auto out_g_e = EigenMatrix::From(out_g_t, {1, w}); Eigen::DSizes bcast(h, 1); switch (strategy) { case AVERAGE: in_g_e.device(place) = (out_g_e / static_cast(h)).broadcast(bcast); break; case SUM: in_g_e.device(place) = (out_g_e).broadcast(bcast); break; case SQRT: in_g_e.device(place) = (out_g_e / std::sqrt(static_cast(h))).broadcast(bcast); break; case LAST: in_g_e.chip(h - 1, 0).device(place) = out_g_e; break; case FIRST: in_g_e.chip(0, 0).device(place) = out_g_e; break; default: PADDLE_THROW("unsupported pooling strategy"); } } } }; } // namespace operators } // namespace paddle