# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.framework import in_dygraph_mode from paddle.fluid.data_feeder import check_variable_and_dtype from paddle.fluid import core def graph_send_recv(x, src_index, dst_index, pool_type="sum", name=None): r""" Graph Learning Send_Recv combine operator. This operator is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index` to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor in different pooling types, like sum, mean, max, or min. .. code-block:: text Given: X = [[0, 2, 3], [1, 4, 5], [2, 6, 7]] src_index = [0, 1, 2, 0] dst_index = [1, 2, 1, 0] pool_type = "sum" Then: Out = [[0, 2, 3], [2, 8, 10], [1, 4, 5]] Args: x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64. src_index (Tensor): An 1-D tensor, and the available data type is int32, int64. dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`. The available data type is int32, int64. pool_type (str): The pooling type of graph_send_recv, including `sum`, `mean`, `max`, `min`. Default value is `sum`. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32") indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32") src_index = indexes[:, 0] dst_index = indexes[:, 1] out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum") # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]] """ if pool_type not in ["sum", "mean", "max", "min"]: raise ValueError( "pool_type should be `sum`, `mean`, `max` or `min`, but received %s" % pool_type) if in_dygraph_mode(): out, tmp = core.ops.graph_send_recv(x, src_index, dst_index, 'pool_type', pool_type.upper()) return out check_variable_and_dtype(x, "X", ("float32", "float64", "int32", "int64"), "graph_send_recv") check_variable_and_dtype(src_index, "Src_index", ("int32", "int64"), "graph_send_recv") check_variable_and_dtype(dst_index, "Dst_index", ("int32", "int64"), "graph_send_recv") helper = LayerHelper("graph_send_recv", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) dst_count = helper.create_variable_for_type_inference( dtype="int32", stop_gradient=True) helper.append_op( type="graph_send_recv", inputs={"X": x, "Src_index": src_index, "Dst_index": dst_index}, outputs={"Out": out, "Dst_count": dst_count}, attrs={"pool_type": pool_type.upper()}) return out