// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/eager/api/utils/tensor_utils.h" #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/eager_tensor.h" #include "paddle/fluid/eager/grad_node_info.h" #include "paddle/phi/api/all.h" namespace egr { class TensorWrapper; /** * EagerUtils is utils used to do some static conversion or autograd * members access, this class is desinged to be a full static functional * utils class * **/ template class IterHelper { virtual void visit(ElementType element) = 0; void visit(std::vector* elements) { for (auto element : *elements) visit(element); } template void apply() {} public: template void apply(T&& arg, Args&&... args) { visit(std::forward(arg)); return apply(std::forward(args)...); } virtual ~IterHelper() = default; }; class ComputeRequireGradIter : public IterHelper { public: bool RequireGrad() { return require_grad_; } private: void visit(AutogradMeta* element) override { // Dispensable Tensors feeds in nullptr autograd_meta if (!element) return; bool stop_gradient = element->StopGradient(); if (!stop_gradient) require_grad_ = true; } bool require_grad_ = false; }; class PassStopGradientIter : public IterHelper { public: void SetStopGradient(bool stop_gradient) { stop_gradient_ = stop_gradient; } private: void visit(AutogradMeta* element) override { if (!element) { // TODO(jiabin): Add Tensor name here when we supported. VLOG(2) << "Tensor is NULL"; return; } element->SetStopGradient(stop_gradient_); } bool stop_gradient_ = true; }; class EagerUtils { public: /** * We have to use autograd_meta and multi_autograd_meta to initialize * autograd_meta for tensor, since we can't init it in * egr::EagerVariable's * constructor (it's abstract class there) * * **/ static AutogradMeta* autograd_meta(paddle::experimental::Tensor* target); static std::vector autograd_meta( std::vector* targets); static std::vector autograd_meta( std::vector* targets); static std::pair OutRankInfo( const paddle::experimental::Tensor& target); static std::shared_ptr grad_node( const paddle::experimental::Tensor& target); static paddle::experimental::Tensor* mutable_grad( const paddle::experimental::Tensor& target); // Set history is used to set backward info during forward process, it will // set forward var's autograd meta's grad node as current backward node. static void SetHistory(std::vector* autograd_metas, const std::shared_ptr& grad_node); static void SetHistory(AutogradMeta* autograd_meta, const std::shared_ptr& grad_node); // This is used for Set vector of tensors' rank static void SetOutRankWithSlot(std::vector* targets, size_t slot_id); static void SetOutRankWithSlot(AutogradMeta* target, size_t slot_id); // This method will return an AutogradMeta pointer unsafely. static AutogradMeta* nullable_autograd_meta( const paddle::experimental::Tensor& target); static AutogradMeta* nullable_autograd_meta( const paddle::optional& target); static std::vector nullable_autograd_meta( const std::vector& targets); static std::vector nullable_autograd_meta( const std::vector& targets); static AutogradMeta* unsafe_autograd_meta( const paddle::experimental::Tensor& target); static std::vector unsafe_autograd_meta( const std::vector& targets); template static bool ComputeRequireGrad(T trace_backward, Args&&... args) { if (!trace_backward) { VLOG(6) << "Do not require grad because trace_backward = false"; return false; } auto iter = ComputeRequireGradIter(); iter.apply(std::forward(args)...); return iter.RequireGrad(); } template static void PassStopGradient(T stop_gradient, Args&&... args) { auto iter = PassStopGradientIter(); iter.SetStopGradient(stop_gradient); iter.apply(std::forward(args)...); } static void CheckInplace(const paddle::experimental::Tensor& target, const AutogradMeta* autograd_meta, bool require_any_grad) { if (require_any_grad && autograd_meta) { PADDLE_ENFORCE_EQ(!autograd_meta->StopGradient() && egr::egr_utils_api::IsLeafTensor(target), false, paddle::platform::errors::InvalidArgument( "Leaf Var (%s) that doesn't stop gradient " "can't use inplace strategy.", target.name())); } } // View Strategy static void HandleViewBetweenInputAndOutput( const std::shared_ptr& input_var, const std::shared_ptr& view_output_var); static void HandleViewBetweenInputAndOutput( const paddle::experimental::Tensor& input_tensor, paddle::experimental::Tensor* view_output_tensor); // TensorWrapper Utils static paddle::experimental::Tensor RecoverTensorWrapper(TensorWrapper* tw); static std::vector RecoverTensorWrapper( std::vector* tw); // Intermidate needed remove this once we don't need legacy // Inner Method static std::shared_ptr TrySyncToVar( const paddle::experimental::Tensor& tensor); // Basic Input static std::vector> TrySyncToVars( const paddle::experimental::Tensor& tensor); // Basic Output static std::vector> TrySyncToVars( paddle::experimental::Tensor* tensor); // Multi Output static std::vector> TrySyncToVars( const std::vector& tensors); // Multi Input static std::vector> TrySyncToVars( const std::vector& tensors); // Construct empty output static std::vector> CreateVars( const size_t num); // Construct Tensor From var static std::vector GetOutputs( const std::vector>& outs); static paddle::experimental::Tensor GetOutput( const std::shared_ptr& out); static void GetOutput(const std::shared_ptr& out, paddle::experimental::Tensor* out_var); static void GetOutputs( const std::vector>& outs, std::vector* result); static void GetOutputs( const std::vector>& outs, const std::vector& out_var); static void GetOutputs(const std::shared_ptr& out, std::vector* result); static void GetOutputs( const std::shared_ptr& out, const std::vector& out_var); static void Output2Result( const std::vector& out_var, std::vector* result); // end Intermidate needed. static void CheckAndRetainGrad(const paddle::experimental::Tensor& tensor); static void CheckAndRetainGrad( const std::vector& tensors); static void CheckAndRetainGrad( const std::vector& tensors); static std::shared_ptr GetGradAccumulationNode( const paddle::experimental::Tensor& tensor); /** * Fill Zero * **/ static void FillZeroForEmptyOptionalGradInput( std::vector* in_grads, const std::vector& grad_in_metas); static void FillZeroForEmptyGradInput(paddle::experimental::Tensor* in_grad, const GradSlotMeta& grad_in_meta); static void FillZeroForEmptyOptionalGradInput( paddle::experimental::Tensor* in_grad, const GradSlotMeta& grad_in_meta); static void FillZeroForEmptyGradInput( std::vector* in_grads, const std::vector& grad_in_metas); /** * Print Input Output (level 0 means least info, level 2 means most info) * **/ static const std::string TensorStr(const paddle::experimental::Tensor& t) { std::string tensor_name_str = ""; if (t.name() == "") { tensor_name_str = "None"; } else { tensor_name_str = t.name(); } const char* TENSOR_INFO_TEMPLATE = "Type: %s, Dtype: %s, Place: %s"; std::string tensor_info_str = ""; if (t.defined()) { if (t.initialized()) { tensor_info_str += paddle::string::Sprintf(TENSOR_INFO_TEMPLATE, t.impl()->type_info().name(), t.dtype(), t.place().DebugString()); } else { tensor_info_str += paddle::string::Sprintf(TENSOR_INFO_TEMPLATE, t.impl()->type_info().name(), "Unknown", "Unknown"); } } else { tensor_info_str += "Unknown"; } if (VLOG_IS_ON(6)) { const char* TENSOR_PRINT_TEMPLATE = "{Name: %s, Initialized: %d, Ptr: %d " "TensorInfo: [ %s ], ADInfo:[ %s ]}"; auto* ad_meta = nullable_autograd_meta(t); if (ad_meta && (ad_meta->WeakGrad().lock().get())) { std::string ad_info_str = ""; const char* AD_INFO_TEMPLATE = "Grad: [ %s ], GradNode: [ %s ], StopGradient: [ %d ]"; ad_info_str += paddle::string::Sprintf(AD_INFO_TEMPLATE, TensorStr(ad_meta->Grad()), GradNodeStr(t), ad_meta->StopGradient()); return paddle::string::Sprintf(TENSOR_PRINT_TEMPLATE, tensor_name_str, t.initialized(), t.impl(), tensor_info_str, ad_info_str); } else { return paddle::string::Sprintf(TENSOR_PRINT_TEMPLATE, tensor_name_str, t.initialized(), t.impl(), tensor_info_str, "None"); } } else if (VLOG_IS_ON(5)) { const char* TENSOR_PRINT_TEMPLATE = "{Name: %s, Initialized: %d , Ptr: %d " "TensorInfo: [ %s ]}"; return paddle::string::Sprintf(TENSOR_PRINT_TEMPLATE, tensor_name_str, t.initialized(), t.impl(), tensor_info_str); } else if (VLOG_IS_ON(4)) { const char* TENSOR_PRINT_TEMPLATE = "{ Name: %s, Initialized: %d, Ptr: %d }"; return paddle::string::Sprintf( TENSOR_PRINT_TEMPLATE, tensor_name_str, t.initialized(), t.impl()); } else { return "[ Not specified tensor log level ]"; } } static const std::string GradNodeStr(const egr::GradNodeBase& node) { if (VLOG_IS_ON(6)) { const char* GRAD_NODE_TEMPLATE = "BackwardOutMeta: [ %s ], BackwardInMeta: [ %s ]"; const char* GRAD_SLOT_META_TEMPLATE = " {SlotSize: [%d]: %s} "; const char* SLOT_INFO_TEMPLATE = "SlotID: %s, StopGradients: %s, Edges[ %s ]"; auto out_metas = node.OutputMeta(); auto in_metas = node.InputMeta(); std::string out_slot_str = ""; std::string in_slot_str = ""; const char* EDGE_INFO_TEMPLATE = " { [%d, %d]: [%s, %s] }, "; std::string slot_str = ""; for (size_t i = 0; i < out_metas.size(); i++) { std::string edges_str = ""; std::string sg_str = ""; for (const GradSlotMeta& meta : out_metas[i]) { const egr::Edge& edge = meta.GetEdge(); if (edge.IsInitialized()) { edges_str += paddle::string::Sprintf(EDGE_INFO_TEMPLATE, edge.GetEdgeRankInfo().first, edge.GetEdgeRankInfo().second, edge.GetGradNode(), edge.GetGradNode()->name()); } else { edges_str += paddle::string::Sprintf("{ NULL Edge }"); } sg_str += meta.IsStopGradient() ? "1, " : "0, "; } out_slot_str += paddle::string::Sprintf(SLOT_INFO_TEMPLATE, i, sg_str, edges_str); } std::string out_meta_str = paddle::string::Sprintf( GRAD_SLOT_META_TEMPLATE, out_metas.size(), out_slot_str); for (size_t i = 0; i < in_metas.size(); i++) { std::string edges_str = ""; std::string sg_str = ""; for (const GradSlotMeta& meta : in_metas[i]) { edges_str += paddle::string::Sprintf("{ NULL Edge }"); sg_str += meta.IsStopGradient() ? "1, " : "0, "; } in_slot_str += paddle::string::Sprintf(SLOT_INFO_TEMPLATE, i, sg_str, edges_str); } std::string in_meta_str = paddle::string::Sprintf(GRAD_SLOT_META_TEMPLATE, in_slot_str); return paddle::string::Sprintf( GRAD_NODE_TEMPLATE, out_meta_str, in_meta_str); } else if (VLOG_IS_ON(5)) { const char* GRAD_NODE_TEMPLATE = "BackwardOutMeta: [ %s ], BackwardInMeta: [ %s ]"; const char* GRAD_SLOT_META_TEMPLATE = "SlotSize: %d"; std::string out_meta_str = paddle::string::Sprintf( GRAD_SLOT_META_TEMPLATE, node.OutputMeta().size()); std::string in_meta_str = paddle::string::Sprintf( GRAD_SLOT_META_TEMPLATE, node.InputMeta().size()); return paddle::string::Sprintf( GRAD_NODE_TEMPLATE, out_meta_str, in_meta_str); } else { return "[ Not specified grad node log level. ] "; } } static const std::string GradNodeStr(const paddle::experimental::Tensor& t) { auto* ad_meta = nullable_autograd_meta(t); if (ad_meta && (ad_meta->GetMutableGradNode().get())) { return GradNodeStr((*ad_meta->GetMutableGradNode().get())); } else { return "None"; } } static const std::string TensorStr( const std::vector& tensors) { std::string tensors_str = ""; for (const auto& tensor : tensors) { tensors_str += TensorStr(tensor) + ", "; } return "[ " + tensors_str + " ]"; } static const std::string TensorStr( const paddle::optional& t) { if (!t.is_initialized()) { return "{ UnDefinedTensor }"; } else { return TensorStr((*t.get_ptr())); } } static const std::string TensorStr( const paddle::optional>& tensors) { std::string tensors_str = ""; if (!tensors.is_initialized()) { return "[ UnDefinedTensor List ]"; } else { for (const auto& tensor : (*tensors.get_ptr())) { tensors_str += TensorStr(tensor) + ", "; } return "[ " + tensors_str + " ]"; } } }; } // namespace egr