# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle.fluid as fluid from paddle.fluid import compiler import paddle import unittest import six import numpy as np dev_cnt = 2 if fluid.core.is_compiled_with_cuda(): dev_cnt = fluid.core.get_cuda_device_count() os.environ['CPU_NUM'] = str(dev_cnt) def dummy_func_with_no_input(): return np.array([0], dtype='float32') def dummy_func_with_no_output(x): pass def tanh(x): return np.tanh(x) def tanh_grad(y, dy): return np.array(dy) * (1 - np.square(np.array(y))) def cross_entropy(logits, labels): logits = np.array(logits) labels = np.array(labels) M = logits.shape[0] N = logits.shape[1] ret = np.ndarray([M, 1]).astype(logits.dtype) for idx in six.moves.range(M): ret[idx][0] = -np.log(logits[idx][labels[idx][0]]) return ret def cross_entropy_grad(logits, labels, bwd_dout): logits = np.array(logits) labels = np.array(labels) bwd_dout = np.array(bwd_dout) M = logits.shape[0] N = logits.shape[1] dlogits = np.zeros([M, N]).astype(logits.dtype) for idx in six.moves.range(M): dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][ 0]] return dlogits, None def simple_fc_net(img, label, use_py_func_op): hidden = img for idx in range(4): hidden = fluid.layers.fc( hidden, size=200, bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=1.0))) if not use_py_func_op: hidden = fluid.layers.tanh(hidden) else: new_hidden = fluid.default_main_program().current_block( ).create_var( name='hidden_{}'.format(idx), dtype='float32', shape=hidden.shape) hidden = fluid.layers.py_func( func=tanh, x=hidden, out=new_hidden, backward_func=tanh_grad, skip_vars_in_backward_input=hidden) prediction = fluid.layers.fc(hidden, size=10, act='softmax') if not use_py_func_op: loss = fluid.layers.cross_entropy(input=prediction, label=label) else: loss = fluid.default_main_program().current_block().create_var( name='loss', dtype='float32', shape=[-1, 1]) loss = fluid.layers.py_func( func=cross_entropy, x=[prediction, label], out=loss, backward_func=cross_entropy_grad, skip_vars_in_backward_input=loss) dummy_var = fluid.default_main_program().current_block().create_var( name='test_tmp_var', dtype='float32', shape=[1]) fluid.layers.py_func( func=dummy_func_with_no_input, x=None, out=dummy_var) loss += dummy_var fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None) loss = fluid.layers.mean(loss) return loss def reader(): for _ in six.moves.range(dev_cnt * 100): yield np.random.random([784]), np.random.random_integers( size=[1], low=0, high=9) def test_main(use_cuda, use_py_func_op, use_parallel_executor): if use_cuda and not fluid.core.is_compiled_with_cuda(): return None with fluid.program_guard(fluid.Program(), fluid.Program()): with fluid.scope_guard(fluid.core.Scope()): fluid.default_main_program().random_seed = 1 fluid.default_startup_program().random_seed = 1 np.random.seed(1) img = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') loss = simple_fc_net(img, label, use_py_func_op) optimizer = fluid.optimizer.SGD(learning_rate=1e-3) optimizer.minimize(loss) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() feeder = fluid.DataFeeder(feed_list=[img, label], place=place) r = paddle.batch(reader, batch_size=10) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) train_cp = fluid.default_main_program() if use_parallel_executor: train_cp = compiler.CompiledProgram(fluid.default_main_program( )) train_cp = train_cp.with_data_parallel(loss_name=loss.name) fetch_list = [loss.name] else: fetch_list = [loss] ret = [] for epoch_id in six.moves.range(2): for d in r(): L, = exe.run(train_cp, feed=feeder.feed(d), fetch_list=fetch_list) ret.append(L) return np.array(ret) class TestPyFuncOpUseExecutor(unittest.TestCase): def setUp(self): self.use_parallel_executor = False def test_loss_diff(self): losses = [] for use_cuda in [True, False]: for use_py_func_op in [True, False]: L = test_main(use_cuda, use_py_func_op, self.use_parallel_executor) if L is not None: losses.append(L) for idx in six.moves.range(len(losses) - 1): max_diff = np.max(np.abs(losses[idx] - losses[0])) self.assertAlmostEqual(max_diff, 0, delta=1e-3) class TestPyFuncOpUseParallelExecutor(TestPyFuncOpUseExecutor): def setUp(self): self.use_parallel_executor = True if __name__ == '__main__': unittest.main()