# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest import paddle.fluid as fluid class TestRandomCropOp(OpTest): def setUp(self): to_crop = np.array([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]] * 5).astype(np.int32) self.possible_res = [ np.array([[1, 2, 3], [5, 6, 7]]).astype(np.int32), np.array([[2, 3, 4], [6, 7, 8]]).astype(np.int32), np.array([[5, 6, 7], [9, 10, 11]]).astype(np.int32), np.array([[6, 7, 8], [10, 11, 12]]).astype(np.int32) ] self.op_type = "random_crop" self.inputs = {'X': to_crop, 'Seed': np.array([10]).astype('int64')} self.outputs = {'Out': np.array([]), 'SeedOut': np.array([])} self.attrs = {'shape': [2, 3]} def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): out = np.array(outs[1]) for ins in out[:]: is_equal = [(ins == res).all() for res in self.possible_res] self.assertIn(True, is_equal) class TestRandomCropOpError(unittest.TestCase): def test_errors(self): with fluid.program_guard(fluid.Program()): def test_x_type(): input_data = np.random.random(2, 3, 256, 256).astype("float32") fluid.layers.random_crop(input_data) self.assertRaises(TypeError, test_x_type) def test_x_dtype(): x2 = fluid.layers.data( name='x2', shape=[None, 3, 256, 256], dtype='float16') fluid.layers.random_crop(x2) self.assertRaises(TypeError, test_x_dtype) def test_shape_type(): x3 = fluid.layers.data( name='x3', shape=[None, 3, 256, 256], dtype='float32') fluid.layers.random_crop(x3, shape=1) self.assertRaises(TypeError, test_shape_type) if __name__ == "__main__": unittest.main()