# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle from paddle.static import Program, program_guard class TestDiagFlatError(unittest.TestCase): def test_errors(self): paddle.enable_static() with program_guard(Program(), Program()): def test_diagflat_type(): x = [1, 2, 3] output = paddle.diagflat(x) self.assertRaises(TypeError, test_diagflat_type) x = paddle.static.data('data', [3, 3]) self.assertRaises(TypeError, paddle.diagflat, x, offset=2.5) class TestDiagFlatAPI(unittest.TestCase): def setUp(self): self.input_np = np.random.random(size=(10, 10)).astype(np.float64) self.expected0 = np.diagflat(self.input_np) self.expected1 = np.diagflat(self.input_np, k=1) self.expected2 = np.diagflat(self.input_np, k=-1) self.input_np2 = np.random.random(size=(20)).astype(np.float64) self.expected3 = np.diagflat(self.input_np2) self.expected4 = np.diagflat(self.input_np2, k=1) self.expected5 = np.diagflat(self.input_np2, k=-1) def run_imperative(self): x = paddle.to_tensor(self.input_np) y = paddle.diagflat(x) self.assertTrue(np.allclose(y.numpy(), self.expected0)) y = paddle.diagflat(x, offset=1) self.assertTrue(np.allclose(y.numpy(), self.expected1)) y = paddle.diagflat(x, offset=-1) self.assertTrue(np.allclose(y.numpy(), self.expected2)) x = paddle.to_tensor(self.input_np2) y = paddle.diagflat(x) self.assertTrue(np.allclose(y.numpy(), self.expected3)) y = paddle.diagflat(x, offset=1) self.assertTrue(np.allclose(y.numpy(), self.expected4)) y = paddle.diagflat(x, offset=-1) self.assertTrue(np.allclose(y.numpy(), self.expected5)) def run_static(self, use_gpu=False): x = paddle.static.data(name='input', shape=[10, 10], dtype='float64') x2 = paddle.static.data(name='input2', shape=[20], dtype='float64') result0 = paddle.diagflat(x) result3 = paddle.diagflat(x2) place = paddle.CUDAPlace(0) if use_gpu else paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) res0, res3 = exe.run( feed={"input": self.input_np, 'input2': self.input_np2}, fetch_list=[result0, result3]) self.assertTrue(np.allclose(res0, self.expected0)) self.assertTrue(np.allclose(res3, self.expected3)) def test_cpu(self): paddle.disable_static(place=paddle.CPUPlace()) self.run_imperative() paddle.enable_static() with paddle.static.program_guard(Program()): self.run_static() def test_gpu(self): if not paddle.is_compiled_with_cuda(): return paddle.disable_static(place=paddle.CUDAPlace(0)) self.run_imperative() paddle.enable_static() with paddle.static.program_guard(Program()): self.run_static(use_gpu=True) if __name__ == "__main__": unittest.main()