# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * is_predict = get_config_arg("is_predict", bool, False) ####################Data Configuration ################## if not is_predict: data_dir = 'data/cifar-out/batches/' meta_path = data_dir + 'batches.meta' args = { 'meta': meta_path, 'mean_img_size': 32, 'img_size': 32, 'num_classes': 10, 'use_jpeg': 1, 'color': "color" } define_py_data_sources2( train_list="train.list", test_list="train.list", module='image_provider', obj='processData', args=args) ######################Algorithm Configuration ############# settings( batch_size=128, learning_rate=0.1 / 128.0, learning_method=MomentumOptimizer(0.9), regularization=L2Regularization(0.0005 * 128)) #######################Network Configuration ############# data_size = 3 * 32 * 32 label_size = 10 img = data_layer(name='image', size=data_size) # small_vgg is predefined in trainer_config_helpers.networks predict = small_vgg(input_image=img, num_channels=3, num_classes=label_size) if not is_predict: lbl = data_layer(name="label", size=label_size) outputs(classification_cost(input=predict, label=lbl)) else: outputs(predict)