# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid.proto import data_feed_pb2 from google.protobuf import text_format from . import core __all__ = ['DatasetFactory'] class DatasetFactory(object): def __init__(self): pass def create_dataset(self, datafeed_class="QueueDataset"): try: dataset = globals()[datafeed_class]() return dataset except: raise ValueError("datafeed class %s does not exist" % datafeed_class) class DatasetBase(object): def __init__(self): # define class name here # to decide whether we need create in memory instance self.proto_desc = data_feed_pb2.DataFeedDesc() self.proto_desc.pipe_command = "cat" self.dataset = core.MultiSlotDataset() self.thread_num = 0 def set_pipe_command(self, pipe_command): """ Set pipe command of current dataset A pipe command is a UNIX pipeline command that can be used only """ self.proto_desc.pipe_command = pipe_command def set_batch_size(self, batch_size): """ Set batch size. Will be effective during training Example: >>> data_feed = fluid.DataFeedDesc('data.proto') >>> data_feed.set_batch_size(128) Args: batch_size: batch size """ self.proto_desc.batch_size = batch_size def set_thread(self, thread_num): self.dataset.set_thread_num(thread_num) self.thread_num = thread_num def set_filelist(self, filelist): self.dataset.set_filelist(filelist) def set_use_var(self, var_list): multi_slot = self.proto_desc.multi_slot_desc for var in var_list: slot_var = multi_slot.slots.add() slot_var.is_used = True slot_var.name = var.name if var.lod_level == 0: slot_var.is_dense = True if var.dtype == core.VarDesc.VarType.FP32: slot_var.type = "float32" elif var.dtype == core.VarDesc.VarType.INT64: slot_var.type = "uint64" else: raise ValueError( "Currently, fluid.dataset only supports dtype=float32 and dtype=int64" ) def _prepare_to_run(self): self.dataset.set_data_feed_desc(self.desc()) def desc(self): """ Returns a protobuf message for this DataFeedDesc Example: >>> data_feed = fluid.DataFeedDesc('data.proto') >>> print(data_feed.desc()) Returns: A string message """ return text_format.MessageToString(self.proto_desc) class InMemoryDataset(DatasetBase): def __init__(self): super(InMemoryDataset, self).__init__() self.proto_desc.name = "MultiSlotInMemoryDataFeed" def load_into_memory(self): self._prepare_to_run() self.dataset.load_into_memory() def local_shuffle(self): self.dataset.local_shuffle() def global_shuffle(self): from .distributed import ps_instance instance = ps_instance.PaddlePSInstance(1, 2) self.dataset.set_trainer_num(instance.get_worker_num()) self.global_shuffle() class QueueDataset(DatasetBase): def __init__(self): super(QueueDataset, self).__init__() self.proto_desc.name = "MultiSlotDataFeed"