/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/pooling.h" #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace operators { template class SqueezeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto *in = context.Input("X"); auto *out = context.Output("Out"); auto &axes = context.Attr>("axes"); auto x_dims = in->dims(); auto out_dims = GetOutputShape(axes, x_dims); out->mutable_data(context.GetPlace(), in->type()); framework::TensorCopy( *in, context.GetPlace(), context.template device_context(), out); out->Resize(out_dims); } static framework::DDim GetOutputShape(const std::vector squeeze_dims, const framework::DDim &in_dims) { size_t num_squeeze_dims = squeeze_dims.size(); int cnt_squeezed_dims = 0; bool should_squeeze[9] = {false}; // Determines number of dimensions of output tensor after squeeze. // Mark and count the dimensions need to be squeezed if (num_squeeze_dims == 0) { for (int idx = 0; idx < in_dims.size(); ++idx) { if (in_dims[idx] == 1) { should_squeeze[idx] = true; ++cnt_squeezed_dims; } } } else { for (size_t idx = 0; idx < num_squeeze_dims; ++idx) { int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size() : squeeze_dims[idx]; PADDLE_ENFORCE_GE(current, 0, "Invalid axis, the axis should >= 0." "Current axis is:%d, input tensor's shape = [%s].", current, in_dims); PADDLE_ENFORCE_EQ(in_dims[current], 1, "Invalid axis index, the axis that will be squeezed " "should be equal to 1. But current axis = %d," "input tensor's shape = [%s].", in_dims[current], in_dims); if (!(should_squeeze[current])) { ++cnt_squeezed_dims; } should_squeeze[current] = true; } } // Make output dimensions std::vector output_shape(in_dims.size() - cnt_squeezed_dims, 0); for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) { if (!should_squeeze[in_idx]) { output_shape[out_idx++] = in_dims[in_idx]; } } return framework::make_ddim(output_shape); } }; template class SqueezeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *d_out = ctx.Input(framework::GradVarName("Out")); auto *d_x = ctx.Output(framework::GradVarName("X")); auto in_dims = ctx.Input("X")->dims(); d_x->mutable_data(ctx.GetPlace(), d_out->type()); framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x); d_x->Resize(in_dims); } }; template class Squeeze2Kernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto *out = context.Output("Out"); auto *in = context.Input("X"); auto &axes = context.Attr>("axes"); auto x_dims = in->dims(); auto out_dims = SqueezeKernel::GetOutputShape(axes, x_dims); out->mutable_data(context.GetPlace(), in->type()); framework::TensorCopy( *in, context.GetPlace(), context.template device_context(), out); out->Resize(out_dims); } }; template class Squeeze2GradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *d_out = ctx.Input(framework::GradVarName("Out")); auto *d_x = ctx.Output(framework::GradVarName("X")); // auto in_dims = d_x->dims(); auto xshape_dims = ctx.Input("XShape")->dims(); auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); d_x->mutable_data(ctx.GetPlace(), d_out->type()); framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x); d_x->Resize(x_dims); } }; } // namespace operators } // namespace paddle