BaseActivation¶
- 
class paddle.trainer_config_helpers.activations.BaseActivation(name, support_hppl)
- A mark for activation class. Each activation inherit BaseActivation, which has two parameters. - Parameters: - name (basestring) – activation name in paddle config.
- support_hppl (bool) – True if supported by hppl. HPPL is a library used by paddle internally. Currently, lstm layer can only use activations supported by hppl.
 
AbsActivation¶
- 
class paddle.trainer_config_helpers.activations.AbsActivation
- Abs Activation. - Forward: \(f(z) = abs(z)\) - Derivative: \[\begin{split}1 &\quad if \quad z > 0 \\ -1 &\quad if \quad z < 0 \\ 0 &\quad if \quad z = 0\end{split}\]
ExpActivation¶
- 
class paddle.trainer_config_helpers.activations.ExpActivation
- Exponential Activation. \[f(z) = e^z.\]
IdentityActivation¶
- 
class paddle.trainer_config_helpers.activations.IdentityActivation
- Identity Activation. - Just do nothing for output both forward/backward. 
LinearActivation¶
- 
paddle.trainer_config_helpers.activations.LinearActivation
- alias of - IdentityActivation
SquareActivation¶
- 
class paddle.trainer_config_helpers.activations.SquareActivation
- Square Activation. \[f(z) = z^2.\]
SigmoidActivation¶
- 
class paddle.trainer_config_helpers.activations.SigmoidActivation
- Sigmoid activation. \[f(z) = \frac{1}{1+exp(-z)}\]
SoftmaxActivation¶
- 
class paddle.trainer_config_helpers.activations.SoftmaxActivation
- Softmax activation for simple input \[P(y=j|x) = \frac{e^{x_j}} {\sum^K_{k=1} e^{x_j} }\]
SequenceSoftmaxActivation¶
- 
class paddle.trainer_config_helpers.activations.SequenceSoftmaxActivation
- Softmax activation for one sequence. The dimension of input feature must be 1 and a sequence. - result = softmax(for each_feature_vector[0] in input_feature) for i, each_time_step_output in enumerate(output): each_time_step_output = result[i] 
ReluActivation¶
- 
class paddle.trainer_config_helpers.activations.ReluActivation
- Relu activation. - forward. \(y = max(0, z)\) - derivative: \[\begin{split}1 &\quad if z > 0 \\ 0 &\quad\mathrm{otherwize}\end{split}\]
BReluActivation¶
- 
class paddle.trainer_config_helpers.activations.BReluActivation
- BRelu Activation. - forward. \(y = min(24, max(0, z))\) - derivative: \[\begin{split}1 &\quad if 0 < z < 24 \\ 0 &\quad \mathrm{otherwise}\end{split}\]
SoftReluActivation¶
- 
class paddle.trainer_config_helpers.activations.SoftReluActivation
- SoftRelu Activation. 
TanhActivation¶
- 
class paddle.trainer_config_helpers.activations.TanhActivation
- Tanh activation. \[f(z)=tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}\]
STanhActivation¶
- 
class paddle.trainer_config_helpers.activations.STanhActivation
- Scaled Tanh Activation. \[f(z) = 1.7159 * tanh(2/3*z)\]