# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from .. import core from ..framework import Variable, unique_name from .layer_function_generator import OpProtoHolder from ..initializer import force_init_on_cpu _supported_int_dtype_ = [ core.VarDesc.VarType.UINT8, core.VarDesc.VarType.INT8, core.VarDesc.VarType.INT16, core.VarDesc.VarType.INT32, core.VarDesc.VarType.INT64, ] compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__'] def monkey_patch_variable(): def unique_tmp_name(): return unique_name.generate("tmp") def safe_get_dtype(var): try: dtype = var.dtype except: raise ValueError("Cannot get data type from %s", var.name) return dtype def current_block(var): return var.block.program.current_block() def create_new_tmp_var(block, dtype): tmp_name = unique_tmp_name() return block.create_var(name=tmp_name, dtype=dtype) def create_tensor(block, value, dtype, shape): value = float(value) var = create_new_tmp_var(block, dtype) block.append_op( type="fill_constant", outputs={'Out': [var]}, attrs={ 'dtype': var.dtype, 'shape': shape, 'value': value, 'force_cpu': force_init_on_cpu() }, stop_gradient=True) var.stop_gradient = True return var def create_scalar(block, value, dtype): return create_tensor(block, value, dtype, shape=[1]) def create_tensor_with_batchsize(ref_var, value, dtype): assert isinstance(ref_var, Variable) value = float(value) block = current_block(ref_var) var = create_new_tmp_var(block, dtype) batch_dim = -1 for i, d in enumerate(ref_var.shape): if d < 0: batch_dim = i break assert batch_dim != -1 block.append_op( type='fill_constant_batch_size_like', outputs={'Out': [var]}, inputs={'Input': [ref_var]}, attrs={ 'shape': ref_var.shape, 'value': value, 'input_dim_idx': batch_dim, 'output_dim_idx': batch_dim }, stop_gradient=True) var.stop_gradient = True return var def astype(self, dtype): """ **Notes**: **The variable must be a** :ref:`api_fluid_Tensor` Cast a variable to a specified data type. Args: self(Variable): The source variable dtype: The target data type Returns: Variable: Variable with new dtype Examples: In Static Graph Mode: .. code-block:: python import paddle.fluid as fluid startup_prog = fluid.Program() main_prog = fluid.Program() with fluid.program_guard(startup_prog, main_prog): original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32') new_variable = original_variable.astype('int64') print("new var's dtype is: {}".format(new_variable.dtype)) In Dygraph Mode: .. code-block:: python import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): original_variable = fluid.dygraph.to_variable(x) print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype)) new_variable = original_variable.astype('int64') print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype)) """ block = current_block(self) out = create_new_tmp_var(block, dtype) block.append_op( type="cast", inputs={"X": [self]}, outputs={"Out": [out]}, attrs={"in_dtype": self.dtype, "out_dtype": out.dtype}) return out def _scalar_elementwise_op_(var, scale, bias): block = current_block(var) out = create_new_tmp_var(block, var.dtype) block.append_op( type="scale", inputs={"X": [var]}, outputs={"Out": [out]}, attrs={"scale": scale, "bias": bias}) return out def _neg_(var): return _scalar_elementwise_op_(var, -1.0, 0.0) def _scalar_elementwise_add_(var, value): return _scalar_elementwise_op_(var, 1.0, value) def _scalar_elementwise_sub_(var, value): return _scalar_elementwise_op_(var, 1.0, -value) def _scalar_elementwise_rsub_(var, value): return _scalar_elementwise_op_(var, -1.0, value) def _scalar_elementwise_mul_(var, value): return _scalar_elementwise_op_(var, value, 0.0) def _scalar_elementwise_div_(var, value): return _scalar_elementwise_op_(var, 1.0 / value, 0.0) def _elemwise_method_creator_(method_name, op_type, reverse=False, scalar_method=None): def __impl__(self, other_var): # FIXME(zjl): elementwise_div between integers cannot be converted to scale, # which may lose accuracy. This is a hot fix for release 1.6. if scalar_method is not None and not ( op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_): if isinstance(other_var, float): if self.dtype in _supported_int_dtype_: assert other_var == int(other_var), \ "float value {} cannot convert to integer".format(other_var) return scalar_method(self, other_var) elif isinstance(other_var, int): return scalar_method(self, float(other_var)) lhs_dtype = safe_get_dtype(self) if not isinstance(other_var, Variable): if reverse: has_batch_size = False for elem in self.shape: if elem < 0: has_batch_size = True break if not has_batch_size: other_var = create_tensor( current_block(self), other_var, dtype=lhs_dtype, shape=self.shape) else: other_var = create_tensor_with_batchsize( self, other_var, lhs_dtype) else: # add fill_op to current_block other_var = create_scalar( current_block(self), value=other_var, dtype=lhs_dtype) rhs_dtype = safe_get_dtype(other_var) if lhs_dtype != rhs_dtype: other_var = astype(other_var, lhs_dtype) if reverse: tmp = self self = other_var other_var = tmp # NOTE(zhiqiu): the output of compare operator should be bool. if method_name in compare_ops: out = create_new_tmp_var(current_block(self), dtype="bool") else: out = create_new_tmp_var(current_block(self), dtype=lhs_dtype) axis = -1 if other_var.shape[0] == -1: axis = 0 current_block(self).append_op( type=op_type, inputs={'X': [self], 'Y': [other_var]}, outputs={'Out': out}, attrs={'axis': axis}) return out comment = OpProtoHolder.instance().get_op_proto(op_type).comment __impl__.__doc__ = """ {0} Args: self(Variable): left hand variable other_var(Variable|float|int): right hand variable Returns: Variable """.format(comment) __impl__.__name__ = method_name return __impl__ # inject methods for method_name, op_type, reverse, scalar_method in ( ("__add__", "elementwise_add", False, _scalar_elementwise_add_), # a+b == b+a. Do not need to reverse explicitly ("__radd__", "elementwise_add", False, _scalar_elementwise_add_), ("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_), ("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_), ("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_), # a*b == b*a. Do not need to reverse explicitly ("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_), ("__div__", "elementwise_div", False, _scalar_elementwise_div_), ("__truediv__", "elementwise_div", False, _scalar_elementwise_div_), ("__rdiv__", "elementwise_div", True, None), ("__rtruediv__", "elementwise_div", True, None), ("__pow__", "elementwise_pow", False, None), ("__rpow__", "elementwise_pow", True, None), ("__floordiv__", "elementwise_floordiv", False, None), ("__mod__", "elementwise_mod", False, None), # for logical compare ("__eq__", "equal", False, None), ("__ne__", "not_equal", False, None), ("__lt__", "less_than", False, None), ("__le__", "less_equal", False, None), ("__gt__", "greater_than", False, None), ("__ge__", "greater_equal", False, None)): setattr(Variable, method_name, _elemwise_method_creator_(method_name, op_type, reverse, scalar_method)) # b = -a Variable.__neg__ = _neg_ Variable.astype = astype