/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/elementwise/elementwise_mul_op.h" #include #include #include "paddle/fluid/operators/elementwise/elementwise_op.h" #include "paddle/fluid/platform/complex.h" namespace paddle { namespace operators { template struct SameDimsElemwiseMul< platform::CPUDeviceContext, T, typename std::enable_if::value>::type> { void operator()(const framework::ExecutionContext &ctx, const framework::Tensor *x, const framework::Tensor *y, framework::Tensor *z) { auto blas = phi::funcs::GetBlas(ctx); blas.VMUL(x->numel(), x->data(), y->data(), z->data()); } }; template struct SameDimsElemwiseMul< platform::CPUDeviceContext, T, typename std::enable_if::value>::type> { void operator()(const framework::ExecutionContext &ctx, const framework::Tensor *x, const framework::Tensor *y, framework::Tensor *z) { auto eigen_x = framework::EigenVector::Flatten(*x); auto eigen_y = framework::EigenVector::Flatten(*y); auto eigen_z = framework::EigenVector::Flatten(*z); auto &place = *ctx.template device_context() .eigen_device(); eigen_z.device(place) = eigen_x * eigen_y; } }; class ElementwiseMulOpMaker : public ElementwiseOpMaker { protected: std::string GetName() const override { return "Mul"; } std::string GetEquation() const override { return "Out = X \\\\odot Y"; } void AddInputX() override { AddInput("X", "(Variable), Tensor or LoDTensor of any dimensions. Its dtype " "should be int32, int64, float32, float64."); } void AddInputY() override { AddInput("Y", "(Variable), Tensor or LoDTensor of any dimensions. Its dtype " "should be int32, int64, float32, float64."); } std::string GetOpFuntionality() const override { return "Multiply two tensors element-wise"; } }; template class ElementwiseMulOpGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("elementwise_mul_grad"); op->SetInput("X", this->Input("X")); op->SetInput("Y", this->Input("Y")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetAttrMap(this->Attrs()); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y")); } }; template class ElementwiseMulDoubleGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("elementwise_mul_grad_grad"); op->SetInput("X", this->Input("X")); op->SetInput("Y", this->Input("Y")); op->SetInput("DOut", this->Input(framework::GradVarName("Out"))); op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y"))); op->SetAttrMap(this->Attrs()); op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out"))); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y")); } }; template class ElementwiseMulTripleGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("elementwise_mul_triple_grad"); // get input from double grad op->SetInput("X", this->Input("X")); op->SetInput("Y", this->Input("Y")); op->SetInput("DOut", this->Input("DOut")); op->SetInput("DDX", this->Input("DDX")); op->SetInput("DDY", this->Input("DDY")); op->SetInput("D_DX", this->OutputGrad(framework::GradVarName("X"))); op->SetInput("D_DY", this->OutputGrad(framework::GradVarName("Y"))); op->SetInput("D_DDOut", this->OutputGrad("DDOut")); op->SetAttrMap(this->Attrs()); // set outputs op->SetOutput("D_X", this->InputGrad("X")); op->SetOutput("D_Y", this->InputGrad("Y")); op->SetOutput("D_DOut", this->InputGrad("DOut")); op->SetOutput("D_DDX", this->InputGrad("DDX")); op->SetOutput("D_DDY", this->InputGrad("DDY")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(elementwise_mul, ops::ElementwiseMulOp, ops::ElementwiseMulOpMaker, ops::ElementwiseOpInferVarType, ops::ElementwiseMulOpGradMaker, ops::ElementwiseMulOpGradMaker); REGISTER_OPERATOR( elementwise_mul_grad, ops::ElementwiseOpGrad, ops::ElementwiseMulDoubleGradMaker, ops::ElementwiseMulDoubleGradMaker); REGISTER_OPERATOR( elementwise_mul_grad_grad, ops::ElementwiseOpDoubleGrad, ops::ElementwiseDoubleGradOpInplaceInferer, ops::ElementwiseMulTripleGradMaker, ops::ElementwiseMulTripleGradMaker); REGISTER_OPERATOR(elementwise_mul_triple_grad, ops::ElementwiseOpTripleGrad); REGISTER_OP_CPU_KERNEL( elementwise_mul, ops::ElementwiseMulKernel, ops::ElementwiseMulKernel, ops::ElementwiseMulKernel, ops::ElementwiseMulKernel, ops::ElementwiseMulKernel, ops::ElementwiseMulKernel, ops::ElementwiseMulKernel>, ops::ElementwiseMulKernel>); REGISTER_OP_CPU_KERNEL( elementwise_mul_grad, ops::ElementwiseMulGradKernel, ops::ElementwiseMulGradKernel, ops::ElementwiseMulGradKernel, ops::ElementwiseMulGradKernel, ops::ElementwiseMulGradKernel, ops::ElementwiseMulGradKernel, ops::ElementwiseMulGradKernel>, ops::ElementwiseMulGradKernel>); REGISTER_OP_CPU_KERNEL( elementwise_mul_grad_grad, ops::ElementwiseMulDoubleGradKernel, ops::ElementwiseMulDoubleGradKernel, ops::ElementwiseMulDoubleGradKernel, ops::ElementwiseMulDoubleGradKernel, ops::ElementwiseMulDoubleGradKernel, ops::ElementwiseMulDoubleGradKernel, ops::ElementwiseMulDoubleGradKernel>, ops::ElementwiseMulDoubleGradKernel>); REGISTER_OP_CPU_KERNEL( elementwise_mul_triple_grad, ops::ElementwiseMulTripleGradKernel, ops::ElementwiseMulTripleGradKernel, ops::ElementwiseMulTripleGradKernel, ops::ElementwiseMulTripleGradKernel, ops::ElementwiseMulTripleGradKernel, ops::ElementwiseMulTripleGradKernel, ops::ElementwiseMulTripleGradKernel>, ops::ElementwiseMulTripleGradKernel>); REGISTER_OP_VERSION(elementwise_mul) .AddCheckpoint( R"ROC(Register elementwise_mul for adding the attribute of Scale_y)ROC", paddle::framework::compatible::OpVersionDesc().NewAttr( "Scale_y", "In order to support the function of scaling the input Y when " "using the operator of elementwise_mul.", 1.0f));