# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype from ..fluid import core, layers # TODO: define searching & indexing functions of a tensor __all__ = [ 'argmax', # 'argmin', # 'argsort', # 'has_inf', # 'has_nan', # 'masked_select', # 'topk', 'where', 'index_select', 'nonzero', 'sort', 'index_sample' ] from paddle.common_ops_import import * def argmax(input, axis=None, dtype=None, out=None, keepdims=False, name=None): """ This OP computes the indices of the max elements of the input tensor's element along the provided axis. Args: input(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(input). when axis<0, it works the same way as axis+R. Default is None, it will use the last dim to select indices of max value. dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can be int32, int64. The default value is None, and it will return the int64 indices. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. Defalut is None. keepdims(bool, optional): Keep the axis that do the select max. name(str, optional): The name of output variable, normally there is no need for user to set this this property. Default value is None, the framework set the name of output variable. Returns: Variable: A Tensor with data type int64. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = paddle.argmax(input=x, axis=-1) out2 = paddle.argmax(input=x, axis=0) out3 = paddle.argmax(input=x, axis=1) out4 = paddle.argmax(input=x, axis=2) out5 = paddle.argmax(input=x, axis=2, keepdims=True) print(out1.numpy()) # [[2 3 1] # [0 3 1]] print(out2.numpy()) # [[0 0 0 0] # [1 1 1 1] # [0 0 0 1]] print(out3.numpy()) # [[2 2 0 1] # [0 1 1 1]] print(out4.numpy()) # [[2 3 1] # [0 3 1]] print(out5.numpy()) #array([[[2], # [3], # [1]], # [[0], # [3], # [1]]]) """ helper = LayerHelper("arg_max", **locals()) var_dtype = None attrs = {} if dtype is not None: check_dtype(dtype, 'create data type', ['int32', 'int64'], 'arg_max') var_dtype = convert_np_dtype_to_dtype_(dtype) attrs["dtype"] = var_dtype else: var_dtype = VarDesc.VarType.INT64 if out is None: out = helper.create_variable_for_type_inference(var_dtype) if axis is None: axis = -1 attrs['keepdims'] = keepdims attrs['axis'] = axis helper.append_op( type='arg_max', inputs={'X': input}, outputs={'Out': [out]}, attrs=attrs) out.stop_gradient = True return out def index_select(input, index, dim=0): """ Returns a new tensor which indexes the `input` tensor along dimension `dim` using the entries in `index` which is a Tensor. The returned tensor has the same number of dimensions as the original `input` tensor. The dim-th dimension has the same size as the length of `index`; other dimensions have the same size as in the `input` tensor. Args: input (Variable): The input tensor variable. index (Variable): The 1-D tensor containing the indices to index. dim (int): The dimension in which we index. Returns: Variable: A Tensor with same data type as `input`. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np data = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]) data_index = np.array([0, 1, 1]).astype('int32') with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(data) index = fluid.dygraph.to_variable(data_index) out_z1 = paddle.index_select(x, index) print(out_z1.numpy()) #[[1. 2. 3. 4.] # [5. 6. 7. 8.] # [5. 6. 7. 8.]] out_z2 = paddle.index_select(x, index, dim=1) print(out_z2.numpy()) #[[ 1. 2. 2.] # [ 5. 6. 6.] # [ 9. 10. 10.]] """ helper = LayerHelper("index_select", **locals()) if in_dygraph_mode(): return core.ops.index_select(input, index, 'dim', dim) check_variable_and_dtype(input, 'x', ['float32', 'float64', 'int32', 'int64'], 'paddle.tensor.search.index_sample') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'paddle.tensor.search.index_sample') out = helper.create_variable_for_type_inference(input.dtype) helper.append_op( type='index_select', inputs={'X': input, 'Index': index}, outputs={'Out': out}, attrs={'dim': dim}) return out def nonzero(input, as_tuple=False): """ Return a tensor containing the indices of all non-zero elements of the `input` tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension in `input`, each containing the indices (in that dimension) of all non-zero elements of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1]. Args: inputs (Variable): The input tensor variable. as_tuple (bool): Return type, Tensor or tuple of Tensor. Returns: Variable. The data type is int64. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np data1 = np.array([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]]) data2 = np.array([0.0, 1.0, 0.0, 3.0]) data3 = np.array([0.0, 0.0, 0.0]) with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(data1) x2 = fluid.dygraph.to_variable(data2) x3 = fluid.dygraph.to_variable(data3) out_z1 = paddle.nonzero(x1) print(out_z1.numpy()) #[[0 0] # [1 1] # [2 2]] out_z1_tuple = paddle.nonzero(x1, as_tuple=True) for out in out_z1_tuple: print(out.numpy()) #[[0] # [1] # [2]] #[[0] # [1] # [2]] out_z2 = paddle.nonzero(x2) print(out_z2.numpy()) #[[1] # [3]] out_z2_tuple = paddle.nonzero(x2, as_tuple=True) for out in out_z2_tuple: print(out.numpy()) #[[1] # [3]] out_z3 = paddle.nonzero(x3) print(out_z3.numpy()) #[] out_z3_tuple = paddle.nonzero(x3, as_tuple=True) for out in out_z3_tuple: print(out.numpy()) #[] """ list_out = [] shape = input.shape rank = len(shape) if in_dygraph_mode(): outs = core.ops.where_index(input) else: outs = layers.where(input) if not as_tuple: return outs elif rank == 1: return tuple([outs]) else: for i in range(rank): list_out.append( layers.slice( outs, axes=[rank - 1], starts=[i], ends=[i + 1])) return tuple(list_out) def sort(input, axis=-1, descending=False, out=None, name=None): """ This OP sorts the input along the given axis, and returns sorted output data Varibale and its corresponding index Variable with the same shape as :attr:`input`. **NOTICE**: The Variable in the output of this OP has gradient. You could\ set Variable :attr:`stop_gradient`. Args: input(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. descending(bool, optional) : Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false. out(Variable, optional): The default value is None. Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: tuple: A tuple of sorted data Variable(with the same shape and data type as input) and the sorted indices(with the same shape as input's and with data type int64). Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]).astype(np.float32) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = paddle.sort(input=x, axis=-1) out2 = paddle.sort(input=x, axis=0) out3 = paddle.sort(input=x, axis=1) print(out1[0].numpy()) # [[[5. 5. 8. 9.] # [0. 0. 1. 7.] # [2. 4. 6. 9.]] # [[2. 2. 4. 5.] # [4. 7. 7. 9.] # [0. 1. 6. 7.]]] print(out1[1].numpy()) # [[[0 3 1 2] # [0 1 2 3] # [2 3 0 1]] # [[1 3 2 0] # [0 1 2 3] # [2 0 3 1]]] print(out2[0].numpy()) # [[[5. 2. 4. 2.] # [0. 0. 1. 7.] # [1. 7. 0. 4.]] # [[5. 8. 9. 5.] # [4. 7. 7. 9.] # [6. 9. 2. 6.]]] print(out3[0].numpy()) # [[[0. 0. 1. 4.] # [5. 8. 2. 5.] # [6. 9. 9. 7.]] # [[1. 2. 0. 2.] # [4. 7. 4. 6.] # [5. 7. 7. 9.]]] """ helper = LayerHelper("sort", **locals()) if out is None: out = helper.create_variable_for_type_inference( dtype=input.dtype, stop_gradient=False) ids = helper.create_variable_for_type_inference( VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': input}, outputs={'Out': out, 'Indices': ids}, attrs={'axis': axis, 'descending': descending}) return out, ids def where(condition, x, y, name=None): """ Return a tensor of elements selected from either $x$ or $y$, depending on $condition$. .. math:: out_i = \\begin{cases} x_i, \quad \\text{if} \\ condition_i \\ is \\ True \\\\ y_i, \quad \\text{if} \\ condition_i \\ is \\ False \\\\ \\end{cases} Args: condition(Variable): The condition to choose x or y. x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64. y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor with the same data dype as x. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid import paddle.tensor as paddle x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32") y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32") with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(x_i) y = fluid.dygraph.to_variable(y_i) out = paddle.where(x>1, x, y) print(out.numpy()) #out: [1.0, 1.0, 3.2, 1.2] """ if not in_dygraph_mode(): check_variable_and_dtype(condition, 'condition', ['bool'], 'where') check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where') check_variable_and_dtype( y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where') x_shape = list(x.shape) y_shape = list(y.shape) if x_shape == y_shape: if in_dygraph_mode(): return core.ops.where(condition, x, y) else: helper = LayerHelper("where", **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='where', inputs={'Condition': condition, 'X': x, 'Y': y}, outputs={'Out': [out]}) return out else: cond_int = layers.cast(condition, x.dtype) cond_not_int = layers.cast(layers.logical_not(condition), x.dtype) out1 = layers.elementwise_mul(x, cond_int) out2 = layers.elementwise_mul(y, cond_not_int) out = layers.elementwise_add(out1, out2) return out def index_sample(x, index): """ **IndexSample Layer** IndexSample OP returns the element of the specified location of X, and the location is specified by Index. .. code-block:: text Given: X = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]] Index = [[0, 1, 3], [0, 2, 4]] Then: Out = [[1, 2, 4], [6, 8, 10]] Args: x (Variable): The source input tensor with 2-D shape. Supported data type is int32, int64, float32, float64. index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. Data type is int32 or int64. Returns: output (Variable): The output is a tensor with the same shape as index. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np # create x value x_shape = (2, 5) x_type = "float64" x_np = np.random.random(x_shape).astype(x_type) # create index value index_shape = (2, 3) index_type = "int32" index_np = np.random.randint(low=0, high=x_shape[1], size=index_shape).astype(index_type) x = fluid.data(name='x', shape=[-1, 5], dtype='float64') index = fluid.data(name='index', shape=[-1, 3], dtype='int32') output = paddle.index_sample(x=x, index=index) """ helper = LayerHelper("index_sample", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'paddle.tensor.search.index_sample') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'paddle.tensor.search.index_sample') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='index_sample', inputs={'X': x, 'Index': index}, outputs={'Out': out}) return out