/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "mkldnn.hpp" #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/mkldnn_activation_op.h" namespace paddle { namespace operators { using paddle::framework::Tensor; using paddle::platform::MKLDNNDeviceContext; namespace { template void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm, const T alpha = 0, const T beta = 0) { PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); auto &dev_ctx = ctx.template device_context(); const auto &mkldnn_engine = dev_ctx.GetEngine(); // get buffers const auto *src = ctx.template Input("X"); const auto *src_data = src->template data(); auto *dst = ctx.template Output("Out"); const T *dst_data = dst->template mutable_data(ctx.GetPlace()); // get memory dim PADDLE_ENFORCE(src->dims().size() == 4, "Input dim must be with 4, i.e. NCHW"); std::vector src_tz = framework::vectorize2int(src->dims()); // create memory description // TODO(kbinias-intel): support more formats auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32, mkldnn::memory::format::nchw); // create memory primitives auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, static_cast(src_data)); auto dst_memory = mkldnn::memory({data_md, mkldnn_engine}, static_cast(dst_data)); auto forward_desc = mkldnn::eltwise_forward::desc( mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta); // save prim desc into global device context to be referred in backward path const std::string key = ctx.op().Output("Out"); const std::string key_eltwise_pd = key + "@eltwise_pd"; auto forward_pd = std::make_shared( forward_desc, mkldnn_engine); dev_ctx.SetBlob(key_eltwise_pd, forward_pd); auto eltwise = mkldnn::eltwise_forward(*forward_pd, src_memory, dst_memory); // push primitive to stream and wait until it's executed std::vector pipeline = {eltwise}; mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); } template void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm, const T alpha = 0, const T beta = 0) { auto &dev_ctx = ctx.template device_context(); const auto &mkldnn_engine = dev_ctx.GetEngine(); // get buffers const auto *x = ctx.template Input("X"); const auto *src = x->template data(); auto *dout = ctx.template Input(framework::GradVarName("Out")); const auto *diff_dst = dout->template data(); auto *dx = ctx.template Output(framework::GradVarName("X")); const T *diff_src = dx->template mutable_data(ctx.GetPlace()); // get memory dim std::vector src_tz = framework::vectorize2int(x->dims()); // create memory description auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32, mkldnn::memory::format::nchw); // create memory primitives auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, static_cast(src)); auto diff_src_memory = mkldnn::memory({data_md, mkldnn_engine}, static_cast(diff_src)); auto diff_dst_memory = mkldnn::memory({data_md, mkldnn_engine}, static_cast(diff_dst)); auto backward_desc = mkldnn::eltwise_backward::desc(algorithm, data_md, data_md, alpha, beta); // retrieve eltwise primitive desc from device context const std::string key = ctx.op().Input("Out"); const std::string key_eltwise_pd = key + "@eltwise_pd"; const std::shared_ptr forward_pd = dev_ctx.GetBlob(key_eltwise_pd); PADDLE_ENFORCE(forward_pd != nullptr, "Fail to find eltwise_pd in device context"); auto *p_forward_pd = static_cast(forward_pd.get()); auto eltwise_bwd_prim_desc = mkldnn::eltwise_backward::primitive_desc( backward_desc, mkldnn_engine, *p_forward_pd); auto eltwise_bwd = mkldnn::eltwise_backward(eltwise_bwd_prim_desc, src_memory, diff_dst_memory, diff_src_memory); // push primitive to stream and wait until it's executed std::vector pipeline = {eltwise_bwd}; mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); } } // anonymous namespace template struct MKLDNNActivationFunc : public BaseActivationFunctor { template void operator()(const ExecContext &ctx) const { eltwise_forward(ctx, algorithm); } }; template struct MKLDNNActivationGradFunc : public BaseActivationFunctor { template void operator()(const ExecContext &ctx) const { eltwise_grad(ctx, algorithm); } }; template using ReluMkldnnFunctor = MKLDNNActivationFunc; template using TanhMkldnnFunctor = MKLDNNActivationFunc; template using SqrtMkldnnFunctor = MKLDNNActivationFunc; template using AbsMkldnnFunctor = MKLDNNActivationFunc; template using ReluMkldnnGradFunctor = MKLDNNActivationGradFunc; template using TanhMkldnnGradFunctor = MKLDNNActivationGradFunc; template using SqrtMkldnnGradFunctor = MKLDNNActivationGradFunc; template using AbsMkldnnGradFunctor = MKLDNNActivationGradFunc; } // namespace operators } // namespace paddle namespace ops = paddle::operators; #define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \ REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace, \ ops::MKLDNNActivationKernel>); \ REGISTER_OP_KERNEL( \ act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace, \ ops::MKLDNNActivationGradKernel>); #define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro) \ __macro(relu, ReluMkldnnFunctor, ReluMkldnnGradFunctor); \ __macro(tanh, TanhMkldnnFunctor, TanhMkldnnGradFunctor); \ __macro(sqrt, SqrtMkldnnFunctor, SqrtMkldnnGradFunctor); \ __macro(abs, AbsMkldnnFunctor, AbsMkldnnGradFunctor); FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);