# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, skip_check_grad_ci import paddle.fluid.core as core import paddle.fluid as fluid def trilinear_interp_np(input, out_d, out_h, out_w, out_size=None, actual_shape=None, align_corners=True, align_mode=0, data_layout='NCDHW'): """trilinear interpolation implement in shape [N, C, D, H, W]""" if data_layout == "NDHWC": input = np.transpose(input, (0, 4, 1, 2, 3)) # NDHWC => NCDHW if out_size is not None: out_d = out_size[0] out_h = out_size[1] out_w = out_size[2] if actual_shape is not None: out_d = actual_shape[0] out_h = actual_shape[1] out_w = actual_shape[2] batch_size, channel, in_d, in_h, in_w = input.shape ratio_d = ratio_h = ratio_w = 0.0 if out_d > 1: if (align_corners): ratio_d = (in_d - 1.0) / (out_d - 1.0) else: ratio_d = 1.0 * in_d / out_d if out_h > 1: if (align_corners): ratio_h = (in_h - 1.0) / (out_h - 1.0) else: ratio_h = 1.0 * in_h / out_h if out_w > 1: if (align_corners): ratio_w = (in_w - 1.0) / (out_w - 1.0) else: ratio_w = 1.0 * in_w / out_w out = np.zeros((batch_size, channel, out_d, out_h, out_w)) for i in range(out_d): if (align_mode == 0 and not align_corners): d = int(ratio_d * (i + 0.5) - 0.5) else: d = int(ratio_d * i) d = max(0, d) did = 1 if d < in_d - 1 else 0 if (align_mode == 0 and not align_corners): idx_src_d = max(ratio_d * (i + 0.5) - 0.5, 0) d1lambda = idx_src_d - d else: d1lambda = ratio_d * i - d d2lambda = 1.0 - d1lambda for j in range(out_h): if (align_mode == 0 and not align_corners): h = int(ratio_h * (j + 0.5) - 0.5) else: h = int(ratio_h * j) h = max(0, h) hid = 1 if h < in_h - 1 else 0 if (align_mode == 0 and not align_corners): idx_src_h = max(ratio_h * (j + 0.5) - 0.5, 0) h1lambda = idx_src_h - h else: h1lambda = ratio_h * j - h h2lambda = 1.0 - h1lambda for k in range(out_w): if (align_mode == 0 and not align_corners): w = int(ratio_w * (k + 0.5) - 0.5) else: w = int(ratio_w * k) w = max(0, w) wid = 1 if w < in_w - 1 else 0 if (align_mode == 0 and not align_corners): idx_src_w = max(ratio_w * (k + 0.5) - 0.5, 0) w1lambda = idx_src_w - w else: w1lambda = ratio_w * k - w w2lambda = 1.0 - w1lambda out[:, :, i, j, k] = \ d2lambda * \ (h2lambda * (w2lambda * input[:, :, d, h, w] + \ w1lambda * input[:, :, d, h, w+wid]) + \ h1lambda * (w2lambda * input[:, :, d, h+hid, w] + \ w1lambda * input[:, :, d, h+hid, w+wid])) + \ d1lambda * \ (h2lambda * (w2lambda * input[:, :, d+did, h, w] + \ w1lambda * input[:, :, d+did, h, w+wid]) + \ h1lambda * (w2lambda * input[:, :, d+did, h+hid, w] + \ w1lambda * input[:, :, d+did, h+hid, w+wid])) if data_layout == "NDHWC": out = np.transpose(out, (0, 2, 3, 4, 1)) # NCDHW => NDHWC return out.astype(input.dtype) class TestTrilinearInterpOp(OpTest): def setUp(self): self.out_size = None self.actual_shape = None self.data_layout = 'NCDHW' self.init_test_case() self.op_type = "trilinear_interp" input_np = np.random.random(self.input_shape).astype("float32") if self.data_layout == "NCDHW": in_d = self.input_shape[2] in_h = self.input_shape[3] in_w = self.input_shape[4] else: in_d = self.input_shape[1] in_h = self.input_shape[2] in_w = self.input_shape[3] if self.scale > 0: out_d = int(in_d * self.scale) out_h = int(in_h * self.scale) out_w = int(in_w * self.scale) else: out_d = self.out_d out_h = self.out_h out_w = self.out_w output_np = trilinear_interp_np( input_np, out_d, out_h, out_w, self.out_size, self.actual_shape, self.align_corners, self.align_mode, self.data_layout) self.inputs = {'X': input_np} if self.out_size is not None: self.inputs['OutSize'] = self.out_size if self.actual_shape is not None: self.inputs['OutSize'] = self.actual_shape # c++ end treat NCDHW the same way as NCHW if self.data_layout == 'NCDHW': data_layout = 'NCHW' else: data_layout = 'NHWC' self.attrs = { 'out_d': self.out_d, 'out_h': self.out_h, 'out_w': self.out_w, 'scale': self.scale, 'interp_method': self.interp_method, 'align_corners': self.align_corners, 'align_mode': self.align_mode, 'data_layout': data_layout } self.outputs = {'Out': output_np} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', in_place=True) def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 4, 4, 4] self.out_d = 2 self.out_h = 2 self.out_w = 2 self.scale = 0. self.out_size = np.array([3, 3, 3]).astype("int32") self.align_corners = True self.align_mode = 1 class TestTrilinearInterpCase1(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 1, 7, 8, 9] self.out_d = 1 self.out_h = 1 self.out_w = 1 self.scale = 0. self.align_corners = True self.align_mode = 1 class TestTrilinearInterpCase2(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 9, 6, 8] self.out_d = 12 self.out_h = 12 self.out_w = 12 self.scale = 0. self.align_corners = True self.align_mode = 1 class TestTrilinearInterpCase3(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [3, 2, 16, 8, 4] self.out_d = 32 self.out_h = 16 self.out_w = 8 self.scale = 0. self.align_corners = True self.align_mode = 1 class TestTrilinearInterpCase4(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [4, 1, 7, 8, 9] self.out_d = 1 self.out_h = 1 self.out_w = 1 self.scale = 0. self.out_size = np.array([2, 2, 2]).astype("int32") self.align_corners = True self.align_mode = 1 class TestTrilinearInterpCase5(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [3, 3, 9, 6, 8] self.out_d = 12 self.out_h = 12 self.out_w = 12 self.scale = 0. self.out_size = np.array([11, 11, 11]).astype("int32") self.align_corners = True self.align_mode = 1 class TestTrilinearInterpCase6(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [1, 1, 16, 8, 4] self.out_d = 8 self.out_h = 32 self.out_w = 16 self.scale = 0. self.out_size = np.array([17, 9, 5]).astype("int32") self.align_corners = True self.align_mode = 1 class TestTrilinearInterpSame(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [1, 1, 16, 8, 4] self.out_d = 16 self.out_h = 8 self.out_w = 4 self.scale = 0. self.align_corners = True self.align_mode = 1 class TestTrilinearInterpSameHW(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [1, 1, 16, 8, 4] self.out_d = 8 self.out_h = 8 self.out_w = 4 self.scale = 0. self.align_corners = True self.align_mode = 1 class TestTrilinearInterpActualShape(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [3, 2, 16, 8, 4] self.out_d = 64 self.out_h = 32 self.out_w = 16 self.scale = 0. self.out_size = np.array([33, 19, 7]).astype("int32") self.align_corners = True self.align_mode = 1 class TestTrilinearInterpDatalayout(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 4, 4, 4, 3] self.out_d = 2 self.out_h = 2 self.out_w = 2 self.scale = 0. self.out_size = np.array([3, 3, 3]).astype("int32") self.align_corners = True self.align_mode = 1 self.data_layout = "NDHWC" class TestTrilinearInterpOpUint8(OpTest): def setUp(self): self.out_size = None self.actual_shape = None self.init_test_case() self.op_type = "trilinear_interp" input_np = np.random.randint( low=0, high=256, size=self.input_shape).astype("uint8") if self.scale > 0: out_d = int(self.input_shape[2] * self.scale) out_h = int(self.input_shape[3] * self.scale) out_w = int(self.input_shape[4] * self.scale) else: out_d = self.out_d out_h = self.out_h out_w = self.out_w output_np = trilinear_interp_np(input_np, out_d, out_h, out_w, self.out_size, self.actual_shape, self.align_corners, self.align_mode) self.inputs = {'X': input_np} if self.out_size is not None: self.inputs['OutSize'] = self.out_size self.attrs = { 'out_d': self.out_d, 'out_h': self.out_h, 'out_w': self.out_w, 'scale': self.scale, 'interp_method': self.interp_method, 'align_corners': self.align_corners, 'align_mode': self.align_mode } self.outputs = {'Out': output_np} def test_check_output(self): self.check_output_with_place(place=core.CPUPlace(), atol=1) def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [1, 3, 9, 6, 8] self.out_d = 13 self.out_h = 10 self.out_w = 9 self.scale = 0. self.align_corners = True self.align_mode = 1 class TestTrilinearInterpCase1Uint8(TestTrilinearInterpOpUint8): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 16, 8, 4] self.out_d = 13 self.out_h = 7 self.out_w = 2 self.scale = 0. self.align_corners = True self.align_mode = 1 @skip_check_grad_ci(reason="int8 type only be used in test and inference.") class TestTrilinearInterpCase2Uint8(TestTrilinearInterpOpUint8): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [4, 1, 7, 8, 9] self.out_d = 3 self.out_h = 5 self.out_w = 13 self.scale = 0. self.out_size = np.array([6, 15, 21]).astype("int32") self.align_corners = True self.align_mode = 1 class TestTrilinearInterpOtherMethod1(TestTrilinearInterpOp): def set_align_mode(self): self.align_corners = False self.align_mode = 1 class TestTrilinearInterpWithMethod2(TestTrilinearInterpOp): def set_align_mode(self): self.align_corners = False self.align_mode = 0 class TestTrilinearInterpWithMethod3(TestTrilinearInterpOp): def set_align_mode(self): self.align_corners = True self.align_mode = 0 class TestTrilinearInterpScale1(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 5, 7, 9] self.out_d = 82 self.out_h = 60 self.out_w = 25 self.scale = 2. self.align_corners = True self.align_mode = 1 class TestTrilinearInterpScale2(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 5, 7, 9] self.out_d = 60 self.out_h = 40 self.out_w = 25 self.scale = 1. self.align_corners = True self.align_mode = 1 class TestTrilinearInterpScale3(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 5, 7, 9] self.out_d = 60 self.out_h = 40 self.out_w = 25 self.scale = 1.5 self.align_corners = True self.align_mode = 1 class TestTrilinearInterpZero(TestTrilinearInterpOp): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 5, 7, 11] self.out_d = 60 self.out_h = 40 self.out_w = 25 self.scale = 0.2 self.align_corners = False self.align_mode = 0 class TestTrilinearInterpOp_attr_tensor(OpTest): def setUp(self): self.out_size = None self.actual_shape = None self.init_test_case() self.op_type = "trilinear_interp" self.shape_by_1Dtensor = False self.scale_by_1Dtensor = False self.attrs = { 'interp_method': self.interp_method, 'align_corners': self.align_corners, 'align_mode': self.align_mode } input_np = np.random.random(self.input_shape).astype("float32") self.inputs = {'X': input_np} if self.scale_by_1Dtensor: self.inputs['Scale'] = np.array([self.scale]).astype("float32") elif self.scale > 0: out_d = int(self.input_shape[2] * self.scale) out_h = int(self.input_shape[3] * self.scale) out_w = int(self.input_shape[4] * self.scale) self.attrs['scale'] = self.scale else: out_d = self.out_d out_h = self.out_h out_w = self.out_w if self.shape_by_1Dtensor: self.inputs['OutSize'] = self.out_size elif self.out_size is not None: size_tensor = [] for index, ele in enumerate(self.out_size): size_tensor.append(("x" + str(index), np.ones( (1)).astype('int32') * ele)) self.inputs['SizeTensor'] = size_tensor self.attrs['out_d'] = self.out_d self.attrs['out_h'] = self.out_h self.attrs['out_w'] = self.out_w output_np = trilinear_interp_np(input_np, out_d, out_h, out_w, self.out_size, self.actual_shape, self.align_corners, self.align_mode) self.outputs = {'Out': output_np} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', in_place=True) def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 4, 4, 4] self.out_d = 2 self.out_h = 3 self.out_w = 3 self.scale = 0. self.out_size = [2, 3, 3] self.align_corners = True self.align_mode = 1 # out_size is a 1-D tensor class TestTrilinearInterp_attr_tensor_Case1(TestTrilinearInterpOp_attr_tensor): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [3, 2, 9, 6, 8] self.out_d = 32 self.out_h = 16 self.out_w = 8 self.scale = 0.3 self.out_size = [12, 4, 4] self.align_corners = True self.align_mode = 1 # scale is a 1-D tensor class TestTrilinearInterp_attr_tensor_Case2(TestTrilinearInterpOp_attr_tensor): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 8, 8, 4] self.out_d = 16 self.out_h = 12 self.out_w = 4 self.scale = 0. self.out_size = [16, 4, 10] self.align_corners = True self.align_mode = 1 self.shape_by_1Dtensor = True # scale is a 1-D tensor class TestTrilinearInterp_attr_tensor_Case3(TestTrilinearInterpOp_attr_tensor): def init_test_case(self): self.interp_method = 'trilinear' self.input_shape = [2, 3, 8, 8, 4] self.out_d = 16 self.out_h = 16 self.out_w = 8 self.scale = 2.0 self.out_size = None self.align_corners = True self.align_mode = 1 self.scale_by_1Dtensor = True class TestTrilinearInterpAPI(unittest.TestCase): def test_case(self): x = fluid.data(name="x", shape=[2, 3, 6, 9, 4], dtype="float32") y = fluid.data(name="y", shape=[2, 6, 9, 4, 3], dtype="float32") dim = fluid.data(name="dim", shape=[1], dtype="int32") shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32") actual_size = fluid.data(name="actual_size", shape=[3], dtype="int32") scale_tensor = fluid.data( name="scale_tensor", shape=[1], dtype="float32") out1 = fluid.layers.resize_trilinear( y, out_shape=[12, 18, 8], data_format='NDHWC') out2 = fluid.layers.resize_trilinear(x, out_shape=[12, dim, 8]) out3 = fluid.layers.resize_trilinear(x, out_shape=shape_tensor) out4 = fluid.layers.resize_trilinear( x, out_shape=[4, 4, 8], actual_shape=actual_size) out5 = fluid.layers.resize_trilinear(x, scale=scale_tensor) x_data = np.random.random((2, 3, 6, 9, 4)).astype("float32") dim_data = np.array([18]).astype("int32") shape_data = np.array([12, 18, 8]).astype("int32") actual_size_data = np.array([12, 18, 8]).astype("int32") scale_data = np.array([2.0]).astype("float32") if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) results = exe.run(fluid.default_main_program(), feed={ "x": x_data, "y": np.transpose(x_data, (0, 2, 3, 4, 1)), "dim": dim_data, "shape_tensor": shape_data, "actual_size": actual_size_data, "scale_tensor": scale_data }, fetch_list=[out1, out2, out3, out4, out5], return_numpy=True) expect_res = trilinear_interp_np( x_data, out_d=12, out_h=18, out_w=8, align_mode=1) self.assertTrue( np.allclose(results[0], np.transpose(expect_res, (0, 2, 3, 4, 1)))) for i in range(len(results) - 1): self.assertTrue(np.allclose(results[i + 1], expect_res)) class TestTrilinearInterpOpException(unittest.TestCase): def test_exception(self): input = fluid.data(name="input", shape=[2, 3, 6, 9, 4], dtype="float32") def attr_data_format(): # for 5-D input, data_format only can be NCDHW or NDHWC out = fluid.layers.resize_trilinear( input, out_shape=[4, 8, 4], data_format='NHWC') self.assertRaises(ValueError, attr_data_format) if __name__ == "__main__": unittest.main()