// This file copy from llvm/ADT/SmallVector.h, version: 12.0.0 // Modified the following points // 1. remove macro // 2. remove LLVM_LIKELY and LLVM_UNLIKELY // 3. add at(index) method for small vector // 4. wrap the call to max and min with parenthesis to prevent the macro // expansion to fix the build error on windows platform // 5. change SmallVector to small_vector to unify naming style of utils //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the SmallVector class. // //===----------------------------------------------------------------------===// #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace paddle { /// A range adaptor for a pair of iterators. /// /// This just wraps two iterators into a range-compatible interface. Nothing /// fancy at all. template class iterator_range { IteratorT begin_iterator, end_iterator; public: // TODO: Add SFINAE to test that the Container's iterators match the range's // iterators. template iterator_range(Container &&c) // TODO: Consider ADL/non-member begin/end calls. : begin_iterator(c.begin()), end_iterator(c.end()) {} iterator_range(IteratorT begin_iterator, IteratorT end_iterator) : begin_iterator(std::move(begin_iterator)), end_iterator(std::move(end_iterator)) {} IteratorT begin() const { return begin_iterator; } IteratorT end() const { return end_iterator; } bool empty() const { return begin_iterator == end_iterator; } }; /// Convenience function for iterating over sub-ranges. /// /// This provides a bit of syntactic sugar to make using sub-ranges /// in for loops a bit easier. Analogous to std::make_pair(). template iterator_range make_range(T x, T y) { return iterator_range(std::move(x), std::move(y)); } template iterator_range make_range(std::pair p) { return iterator_range(std::move(p.first), std::move(p.second)); } /// This is all the stuff common to all SmallVectors. /// /// The template parameter specifies the type which should be used to hold the /// Size and Capacity of the small_vector, so it can be adjusted. /// Using 32 bit size is desirable to shrink the size of the small_vector. /// Using 64 bit size is desirable for cases like small_vector, where a /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for /// buffering bitcode output - which can exceed 4GB. template class small_vector_base { protected: void *BeginX; Size_T Size = 0, Capacity; /// The maximum value of the Size_T used. static constexpr size_t SizeTypeMax() { return (std::numeric_limits::max)(); } small_vector_base() = delete; small_vector_base(void *FirstEl, size_t TotalCapacity) : BeginX(FirstEl), Capacity(TotalCapacity) {} /// This is a helper for \a grow() that's out of line to reduce code /// duplication. This function will report a fatal error if it can't grow at /// least to \p MinSize. void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity); /// This is an implementation of the grow() method which only works /// on POD-like data types and is out of line to reduce code duplication. /// This function will report a fatal error if it cannot increase capacity. void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); public: size_t size() const { return Size; } size_t capacity() const { return Capacity; } bool empty() const { return !Size; } /// Set the array size to \p N, which the current array must have enough /// capacity for. /// /// This does not construct or destroy any elements in the vector. /// /// Clients can use this in conjunction with capacity() to write past the end /// of the buffer when they know that more elements are available, and only /// update the size later. This avoids the cost of value initializing elements /// which will only be overwritten. void set_size(size_t N) { assert(N <= capacity()); Size = N; } }; template using SmallVectorSizeType = typename std::conditional= 8, uint64_t, uint32_t>::type; /// Figure out the offset of the first element. template struct SmallVectorAlignmentAndSize { alignas(small_vector_base>) char Base[sizeof( small_vector_base>)]; alignas(T) char FirstEl[sizeof(T)]; }; /// This is the part of small_vector_template_base which does not depend on /// whether /// the type T is a POD. The extra dummy template argument is used by array_ref /// to avoid unnecessarily requiring T to be complete. template class small_vector_template_common : public small_vector_base> { using Base = small_vector_base>; /// Find the address of the first element. For this pointer math to be valid /// with small-size of 0 for T with lots of alignment, it's important that /// small_vector_storage is properly-aligned even for small-size of 0. void *getFirstEl() const { return const_cast(reinterpret_cast( reinterpret_cast(this) + offsetof(SmallVectorAlignmentAndSize, FirstEl))); } // Space after 'FirstEl' is clobbered, do not add any instance vars after it. protected: small_vector_template_common(size_t Size) : Base(getFirstEl(), Size) {} void grow_pod(size_t MinSize, size_t TSize) { Base::grow_pod(getFirstEl(), MinSize, TSize); } /// Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool isSmall() const { return this->BeginX == getFirstEl(); } /// Put this vector in a state of being small. void resetToSmall() { this->BeginX = getFirstEl(); this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. } /// Return true if V is an internal reference to the given range. bool isReferenceToRange(const void *V, const void *First, const void *Last) const { // Use std::less to avoid UB. std::less<> LessThan; return !LessThan(V, First) && LessThan(V, Last); } /// Return true if V is an internal reference to this vector. bool isReferenceToStorage(const void *V) const { return isReferenceToRange(V, this->begin(), this->end()); } /// Return true if First and Last form a valid (possibly empty) range in this /// vector's storage. bool isRangeInStorage(const void *First, const void *Last) const { // Use std::less to avoid UB. std::less<> LessThan; return !LessThan(First, this->begin()) && !LessThan(Last, First) && !LessThan(this->end(), Last); } /// Return true unless Elt will be invalidated by resizing the vector to /// NewSize. bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { // Past the end. if (!isReferenceToStorage(Elt)) return true; // Return false if Elt will be destroyed by shrinking. if (NewSize <= this->size()) return Elt < this->begin() + NewSize; // Return false if we need to grow. return NewSize <= this->capacity(); } /// Check whether Elt will be invalidated by resizing the vector to NewSize. void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { assert(isSafeToReferenceAfterResize(Elt, NewSize) && "Attempting to reference an element of the vector in an operation " "that invalidates it"); } /// Check whether Elt will be invalidated by increasing the size of the /// vector by N. void assertSafeToAdd(const void *Elt, size_t N = 1) { this->assertSafeToReferenceAfterResize(Elt, this->size() + N); } /// Check whether any part of the range will be invalidated by clearing. void assertSafeToReferenceAfterClear(const T *From, const T *To) { if (From == To) return; this->assertSafeToReferenceAfterResize(From, 0); this->assertSafeToReferenceAfterResize(To - 1, 0); } template < class ItTy, std::enable_if_t, T *>::value, bool> = false> void assertSafeToReferenceAfterClear(ItTy, ItTy) {} /// Check whether any part of the range will be invalidated by growing. void assertSafeToAddRange(const T *From, const T *To) { if (From == To) return; this->assertSafeToAdd(From, To - From); this->assertSafeToAdd(To - 1, To - From); } template < class ItTy, std::enable_if_t, T *>::value, bool> = false> void assertSafeToAddRange(ItTy, ItTy) {} /// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. template static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, size_t N) { size_t NewSize = This->size() + N; if (NewSize <= This->capacity()) return &Elt; bool ReferencesStorage = false; int64_t Index = -1; if (!U::TakesParamByValue) { if (This->isReferenceToStorage(&Elt)) { ReferencesStorage = true; Index = &Elt - This->begin(); } } This->grow(NewSize); return ReferencesStorage ? This->begin() + Index : &Elt; } public: using size_type = size_t; using difference_type = ptrdiff_t; using value_type = T; using iterator = T *; using const_iterator = const T *; using const_reverse_iterator = std::reverse_iterator; using reverse_iterator = std::reverse_iterator; using reference = T &; using const_reference = const T &; using pointer = T *; using const_pointer = const T *; using Base::capacity; using Base::empty; using Base::size; // forward iterator creation methods. iterator begin() { return (iterator) this->BeginX; } const_iterator begin() const { return (const_iterator) this->BeginX; } iterator end() { return begin() + size(); } const_iterator end() const { return begin() + size(); } // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } size_type size_in_bytes() const { return size() * sizeof(T); } size_type max_size() const { return (std::min)(this->SizeTypeMax(), size_type(-1) / sizeof(T)); } size_t capacity_in_bytes() const { return capacity() * sizeof(T); } /// Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(begin()); } /// Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(begin()); } reference operator[](size_type idx) { assert(idx < size()); return begin()[idx]; } const_reference operator[](size_type idx) const { assert(idx < size()); return begin()[idx]; } reference at(size_type idx) { assert(idx < size()); return begin()[idx]; } const_reference at(size_type idx) const { assert(idx < size()); return begin()[idx]; } reference front() { assert(!empty()); return begin()[0]; } const_reference front() const { assert(!empty()); return begin()[0]; } reference back() { assert(!empty()); return end()[-1]; } const_reference back() const { assert(!empty()); return end()[-1]; } }; /// small_vector_template_base - This is where we put /// method implementations that are designed to work with non-trivial T's. /// /// We approximate is_trivially_copyable with trivial move/copy construction and /// trivial destruction. While the standard doesn't specify that you're allowed /// copy these types with memcpy, there is no way for the type to observe this. /// This catches the important case of std::pair, which is not /// trivially assignable. template ::value) && (std::is_trivially_move_constructible::value) && std::is_trivially_destructible::value> class small_vector_template_base : public small_vector_template_common { friend class small_vector_template_common; protected: static constexpr bool TakesParamByValue = false; using ValueParamT = const T &; small_vector_template_base(size_t Size) : small_vector_template_common(Size) {} static void destroy_range(T *S, T *E) { while (S != E) { --E; E->~T(); } } /// Move the range [I, E) into the uninitialized memory starting with "Dest", /// constructing elements as needed. template static void uninitialized_move(It1 I, It1 E, It2 Dest) { std::uninitialized_copy( std::make_move_iterator(I), std::make_move_iterator(E), Dest); } /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", /// constructing elements as needed. template static void uninitialized_copy(It1 I, It1 E, It2 Dest) { std::uninitialized_copy(I, E, Dest); } /// Grow the allocated memory (without initializing new elements), doubling /// the size of the allocated memory. Guarantees space for at least one more /// element, or MinSize more elements if specified. void grow(size_t MinSize = 0); /// Create a new allocation big enough for \p MinSize and pass back its size /// in \p NewCapacity. This is the first section of \a grow(). T *mallocForGrow(size_t MinSize, size_t &NewCapacity) { return static_cast( small_vector_base>::mallocForGrow( MinSize, sizeof(T), NewCapacity)); } /// Move existing elements over to the new allocation \p NewElts, the middle /// section of \a grow(). void moveElementsForGrow(T *NewElts); /// Transfer ownership of the allocation, finishing up \a grow(). void takeAllocationForGrow(T *NewElts, size_t NewCapacity); /// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { return this->reserveForParamAndGetAddressImpl(this, Elt, N); } /// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { return const_cast( this->reserveForParamAndGetAddressImpl(this, Elt, N)); } static T &&forward_value_param(T &&V) { return std::move(V); } static const T &forward_value_param(const T &V) { return V; } void growAndAssign(size_t NumElts, const T &Elt) { // Grow manually in case Elt is an internal reference. size_t NewCapacity; T *NewElts = mallocForGrow(NumElts, NewCapacity); std::uninitialized_fill_n(NewElts, NumElts, Elt); this->destroy_range(this->begin(), this->end()); takeAllocationForGrow(NewElts, NewCapacity); this->set_size(NumElts); } template T &growAndEmplaceBack(ArgTypes &&... Args) { // Grow manually in case one of Args is an internal reference. size_t NewCapacity; T *NewElts = mallocForGrow(0, NewCapacity); ::new ((void *)(NewElts + this->size())) T(std::forward(Args)...); moveElementsForGrow(NewElts); takeAllocationForGrow(NewElts, NewCapacity); this->set_size(this->size() + 1); return this->back(); } public: void push_back(const T &Elt) { const T *EltPtr = reserveForParamAndGetAddress(Elt); ::new ((void *)this->end()) T(*EltPtr); this->set_size(this->size() + 1); } void push_back(T &&Elt) { T *EltPtr = reserveForParamAndGetAddress(Elt); ::new ((void *)this->end()) T(::std::move(*EltPtr)); this->set_size(this->size() + 1); } void pop_back() { this->set_size(this->size() - 1); this->end()->~T(); } }; // Define this out-of-line to dissuade the C++ compiler from inlining it. template void small_vector_template_base::grow(size_t MinSize) { size_t NewCapacity; T *NewElts = mallocForGrow(MinSize, NewCapacity); moveElementsForGrow(NewElts); takeAllocationForGrow(NewElts, NewCapacity); } // Define this out-of-line to dissuade the C++ compiler from inlining it. template void small_vector_template_base::moveElementsForGrow( T *NewElts) { // Move the elements over. this->uninitialized_move(this->begin(), this->end(), NewElts); // Destroy the original elements. destroy_range(this->begin(), this->end()); } // Define this out-of-line to dissuade the C++ compiler from inlining it. template void small_vector_template_base::takeAllocationForGrow( T *NewElts, size_t NewCapacity) { // If this wasn't grown from the inline copy, deallocate the old space. if (!this->isSmall()) free(this->begin()); this->BeginX = NewElts; this->Capacity = NewCapacity; } /// small_vector_template_base - This is where we put /// method implementations that are designed to work with trivially copyable /// T's. This allows using memcpy in place of copy/move construction and /// skipping destruction. template class small_vector_template_base : public small_vector_template_common { friend class small_vector_template_common; protected: /// True if it's cheap enough to take parameters by value. Doing so avoids /// overhead related to mitigations for reference invalidation. static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); /// Either const T& or T, depending on whether it's cheap enough to take /// parameters by value. using ValueParamT = typename std::conditional::type; small_vector_template_base(size_t Size) : small_vector_template_common(Size) {} // No need to do a destroy loop for POD's. static void destroy_range(T *, T *) {} /// Move the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template static void uninitialized_move(It1 I, It1 E, It2 Dest) { // Just do a copy. uninitialized_copy(I, E, Dest); } /// Copy the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template static void uninitialized_copy(It1 I, It1 E, It2 Dest) { // Arbitrary iterator types; just use the basic implementation. std::uninitialized_copy(I, E, Dest); } /// Copy the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template static void uninitialized_copy( T1 *I, T1 *E, T2 *Dest, std::enable_if_t::type, T2>::value> * = nullptr) { // Use memcpy for PODs iterated by pointers (which includes small_vector // iterators): std::uninitialized_copy optimizes to memmove, but we can // use memcpy here. Note that I and E are iterators and thus might be // invalid for memcpy if they are equal. if (I != E) memcpy(reinterpret_cast(Dest), I, (E - I) * sizeof(T)); } /// Double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } /// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { return this->reserveForParamAndGetAddressImpl(this, Elt, N); } /// Reserve enough space to add one element, and return the updated element /// pointer in case it was a reference to the storage. T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { return const_cast( this->reserveForParamAndGetAddressImpl(this, Elt, N)); } /// Copy \p V or return a reference, depending on \a ValueParamT. static ValueParamT forward_value_param(ValueParamT V) { return V; } void growAndAssign(size_t NumElts, T Elt) { // Elt has been copied in case it's an internal reference, side-stepping // reference invalidation problems without losing the realloc optimization. this->set_size(0); this->grow(NumElts); std::uninitialized_fill_n(this->begin(), NumElts, Elt); this->set_size(NumElts); } template T &growAndEmplaceBack(ArgTypes &&... Args) { // Use push_back with a copy in case Args has an internal reference, // side-stepping reference invalidation problems without losing the realloc // optimization. push_back(T(std::forward(Args)...)); return this->back(); } public: void push_back(ValueParamT Elt) { const T *EltPtr = reserveForParamAndGetAddress(Elt); memcpy(reinterpret_cast(this->end()), EltPtr, sizeof(T)); this->set_size(this->size() + 1); } void pop_back() { this->set_size(this->size() - 1); } }; /// This class consists of common code factored out of the small_vector class to /// reduce code duplication based on the small_vector 'N' template parameter. template class small_vector_impl : public small_vector_template_base { using SuperClass = small_vector_template_base; public: using iterator = typename SuperClass::iterator; using const_iterator = typename SuperClass::const_iterator; using reference = typename SuperClass::reference; using size_type = typename SuperClass::size_type; protected: using small_vector_template_base::TakesParamByValue; using ValueParamT = typename SuperClass::ValueParamT; // Default ctor - Initialize to empty. explicit small_vector_impl(unsigned N) : small_vector_template_base(N) {} public: small_vector_impl(const small_vector_impl &) = delete; ~small_vector_impl() { // Subclass has already destructed this vector's elements. // If this wasn't grown from the inline copy, deallocate the old space. if (!this->isSmall()) free(this->begin()); } void clear() { this->destroy_range(this->begin(), this->end()); this->Size = 0; } private: template void resizeImpl(size_type N) { if (N < this->size()) { this->pop_back_n(this->size() - N); } else if (N > this->size()) { this->reserve(N); for (auto I = this->end(), E = this->begin() + N; I != E; ++I) if (ForOverwrite) new (&*I) T; else new (&*I) T(); this->set_size(N); } } public: void resize(size_type N) { resizeImpl(N); } /// Like resize, but \ref T is POD, the new values won't be initialized. void resize_for_overwrite(size_type N) { resizeImpl(N); } void resize(size_type N, ValueParamT NV) { if (N == this->size()) return; if (N < this->size()) { this->pop_back_n(this->size() - N); return; } // N > this->size(). Defer to append. this->append(N - this->size(), NV); } void reserve(size_type N) { if (this->capacity() < N) this->grow(N); } void pop_back_n(size_type NumItems) { assert(this->size() >= NumItems); this->destroy_range(this->end() - NumItems, this->end()); this->set_size(this->size() - NumItems); } T pop_back_val() { T Result = ::std::move(this->back()); this->pop_back(); return Result; } void swap(small_vector_impl &RHS); /// Add the specified range to the end of the small_vector. template ::iterator_category, std::input_iterator_tag>::value>> void append(in_iter in_start, in_iter in_end) { this->assertSafeToAddRange(in_start, in_end); size_type NumInputs = std::distance(in_start, in_end); this->reserve(this->size() + NumInputs); this->uninitialized_copy(in_start, in_end, this->end()); this->set_size(this->size() + NumInputs); } /// Append \p NumInputs copies of \p Elt to the end. void append(size_type NumInputs, ValueParamT Elt) { const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); this->set_size(this->size() + NumInputs); } void append(std::initializer_list IL) { append(IL.begin(), IL.end()); } void append(const small_vector_impl &RHS) { append(RHS.begin(), RHS.end()); } void assign(size_type NumElts, ValueParamT Elt) { // Note that Elt could be an internal reference. if (NumElts > this->capacity()) { this->growAndAssign(NumElts, Elt); return; } // Assign over existing elements. std::fill_n(this->begin(), (std::min)(NumElts, this->size()), Elt); if (NumElts > this->size()) std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); else if (NumElts < this->size()) this->destroy_range(this->begin() + NumElts, this->end()); this->set_size(NumElts); } // FIXME: Consider assigning over existing elements, rather than clearing & // re-initializing them - for all assign(...) variants. template ::iterator_category, std::input_iterator_tag>::value>> void assign(in_iter in_start, in_iter in_end) { this->assertSafeToReferenceAfterClear(in_start, in_end); clear(); append(in_start, in_end); } void assign(std::initializer_list IL) { clear(); append(IL); } void assign(const small_vector_impl &RHS) { assign(RHS.begin(), RHS.end()); } iterator erase(const_iterator CI) { // Just cast away constness because this is a non-const member function. iterator I = const_cast(CI); assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds."); iterator N = I; // Shift all elts down one. std::move(I + 1, this->end(), I); // Drop the last elt. this->pop_back(); return (N); } iterator erase(const_iterator CS, const_iterator CE) { // Just cast away constness because this is a non-const member function. iterator S = const_cast(CS); iterator E = const_cast(CE); assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds."); iterator N = S; // Shift all elts down. iterator I = std::move(E, this->end(), S); // Drop the last elts. this->destroy_range(I, this->end()); this->set_size(I - this->begin()); return (N); } private: template iterator insert_one_impl(iterator I, ArgType &&Elt) { // Callers ensure that ArgType is derived from T. static_assert( std::is_same>, T>::value, "ArgType must be derived from T!"); if (I == this->end()) { // Important special case for empty vector. this->push_back(::std::forward(Elt)); return this->end() - 1; } assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); // Grow if necessary. size_t Index = I - this->begin(); std::remove_reference_t *EltPtr = this->reserveForParamAndGetAddress(Elt); I = this->begin() + Index; ::new ((void *)this->end()) T(::std::move(this->back())); // Push everything else over. std::move_backward(I, this->end() - 1, this->end()); this->set_size(this->size() + 1); // If we just moved the element we're inserting, be sure to update // the reference (never happens if TakesParamByValue). static_assert(!TakesParamByValue || std::is_same::value, "ArgType must be 'T' when taking by value!"); if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) ++EltPtr; *I = ::std::forward(*EltPtr); return I; } public: iterator insert(iterator I, T &&Elt) { return insert_one_impl(I, this->forward_value_param(std::move(Elt))); } iterator insert(iterator I, const T &Elt) { return insert_one_impl(I, this->forward_value_param(Elt)); } iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); if (I == this->end()) { // Important special case for empty vector. append(NumToInsert, Elt); return this->begin() + InsertElt; } assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); // Ensure there is enough space, and get the (maybe updated) address of // Elt. const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); // Uninvalidate the iterator. I = this->begin() + InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end() - I) >= NumToInsert) { T *OldEnd = this->end(); append(std::move_iterator(this->end() - NumToInsert), std::move_iterator(this->end())); // Copy the existing elements that get replaced. std::move_backward(I, OldEnd - NumToInsert, OldEnd); // If we just moved the element we're inserting, be sure to update // the reference (never happens if TakesParamByValue). if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) EltPtr += NumToInsert; std::fill_n(I, NumToInsert, *EltPtr); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Move over the elements that we're about to overwrite. T *OldEnd = this->end(); this->set_size(this->size() + NumToInsert); size_t NumOverwritten = OldEnd - I; this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten); // If we just moved the element we're inserting, be sure to update // the reference (never happens if TakesParamByValue). if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) EltPtr += NumToInsert; // Replace the overwritten part. std::fill_n(I, NumOverwritten, *EltPtr); // Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); return I; } template ::iterator_category, std::input_iterator_tag>::value>> iterator insert(iterator I, ItTy From, ItTy To) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); if (I == this->end()) { // Important special case for empty vector. append(From, To); return this->begin() + InsertElt; } assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); // Check that the reserve that follows doesn't invalidate the iterators. this->assertSafeToAddRange(From, To); size_t NumToInsert = std::distance(From, To); // Ensure there is enough space. reserve(this->size() + NumToInsert); // Uninvalidate the iterator. I = this->begin() + InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end() - I) >= NumToInsert) { T *OldEnd = this->end(); append(std::move_iterator(this->end() - NumToInsert), std::move_iterator(this->end())); // Copy the existing elements that get replaced. std::move_backward(I, OldEnd - NumToInsert, OldEnd); std::copy(From, To, I); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Move over the elements that we're about to overwrite. T *OldEnd = this->end(); this->set_size(this->size() + NumToInsert); size_t NumOverwritten = OldEnd - I; this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten); // Replace the overwritten part. for (T *J = I; NumOverwritten > 0; --NumOverwritten) { *J = *From; ++J; ++From; } // Insert the non-overwritten middle part. this->uninitialized_copy(From, To, OldEnd); return I; } void insert(iterator I, std::initializer_list IL) { insert(I, IL.begin(), IL.end()); } template reference emplace_back(ArgTypes &&... Args) { if (this->size() >= this->capacity()) return this->growAndEmplaceBack(std::forward(Args)...); ::new ((void *)this->end()) T(std::forward(Args)...); this->set_size(this->size() + 1); return this->back(); } small_vector_impl &operator=(const small_vector_impl &RHS); small_vector_impl &operator=(small_vector_impl &&RHS); bool operator==(const small_vector_impl &RHS) const { if (this->size() != RHS.size()) return false; return std::equal(this->begin(), this->end(), RHS.begin()); } bool operator!=(const small_vector_impl &RHS) const { return !(*this == RHS); } bool operator<(const small_vector_impl &RHS) const { return std::lexicographical_compare( this->begin(), this->end(), RHS.begin(), RHS.end()); } }; template void small_vector_impl::swap(small_vector_impl &RHS) { if (this == &RHS) return; // We can only avoid copying elements if neither vector is small. if (!this->isSmall() && !RHS.isSmall()) { std::swap(this->BeginX, RHS.BeginX); std::swap(this->Size, RHS.Size); std::swap(this->Capacity, RHS.Capacity); return; } this->reserve(RHS.size()); RHS.reserve(this->size()); // Swap the shared elements. size_t NumShared = this->size(); if (NumShared > RHS.size()) NumShared = RHS.size(); for (size_type i = 0; i != NumShared; ++i) std::swap((*this)[i], RHS[i]); // Copy over the extra elts. if (this->size() > RHS.size()) { size_t EltDiff = this->size() - RHS.size(); this->uninitialized_copy(this->begin() + NumShared, this->end(), RHS.end()); RHS.set_size(RHS.size() + EltDiff); this->destroy_range(this->begin() + NumShared, this->end()); this->set_size(NumShared); } else if (RHS.size() > this->size()) { size_t EltDiff = RHS.size() - this->size(); this->uninitialized_copy(RHS.begin() + NumShared, RHS.end(), this->end()); this->set_size(this->size() + EltDiff); this->destroy_range(RHS.begin() + NumShared, RHS.end()); RHS.set_size(NumShared); } } template small_vector_impl &small_vector_impl::operator=( const small_vector_impl &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; // If we already have sufficient space, assign the common elements, then // destroy any excess. size_t RHSSize = RHS.size(); size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd; if (RHSSize) NewEnd = std::copy(RHS.begin(), RHS.begin() + RHSSize, this->begin()); else NewEnd = this->begin(); // Destroy excess elements. this->destroy_range(NewEnd, this->end()); // Trim. this->set_size(RHSSize); return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. // FIXME: don't do this if they're efficiently moveable. if (this->capacity() < RHSSize) { // Destroy current elements. this->clear(); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::copy(RHS.begin(), RHS.begin() + CurSize, this->begin()); } // Copy construct the new elements in place. this->uninitialized_copy( RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize); // Set end. this->set_size(RHSSize); return *this; } template small_vector_impl &small_vector_impl::operator=( small_vector_impl &&RHS) { // Avoid self-assignment. if (this == &RHS) return *this; // If the RHS isn't small, clear this vector and then steal its buffer. if (!RHS.isSmall()) { this->destroy_range(this->begin(), this->end()); if (!this->isSmall()) free(this->begin()); this->BeginX = RHS.BeginX; this->Size = RHS.Size; this->Capacity = RHS.Capacity; RHS.resetToSmall(); return *this; } // If we already have sufficient space, assign the common elements, then // destroy any excess. size_t RHSSize = RHS.size(); size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd = this->begin(); if (RHSSize) NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); // Destroy excess elements and trim the bounds. this->destroy_range(NewEnd, this->end()); this->set_size(RHSSize); // Clear the RHS. RHS.clear(); return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. // FIXME: this may not actually make any sense if we can efficiently move // elements. if (this->capacity() < RHSSize) { // Destroy current elements. this->clear(); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::move(RHS.begin(), RHS.begin() + CurSize, this->begin()); } // Move-construct the new elements in place. this->uninitialized_move( RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize); // Set end. this->set_size(RHSSize); RHS.clear(); return *this; } /// Storage for the small_vector elements. This is specialized for the N=0 case /// to avoid allocating unnecessary storage. template struct small_vector_storage { alignas(T) char InlineElts[N * sizeof(T)]; }; /// We need the storage to be properly aligned even for small-size of 0 so that /// the pointer math in \a small_vector_template_common::getFirstEl() is /// well-defined. template struct alignas(T) small_vector_storage {}; /// Forward declaration of small_vector so that /// calculateSmallVectorDefaultInlinedElements can reference /// `sizeof(small_vector)`. template class small_vector; /// Helper class for calculating the default number of inline elements for /// `small_vector`. /// /// This should be migrated to a constexpr function when our minimum /// compiler support is enough for multi-statement constexpr functions. template struct CalculateSmallVectorDefaultInlinedElements { // Parameter controlling the default number of inlined elements // for `small_vector`. // // The default number of inlined elements ensures that // 1. There is at least one inlined element. // 2. `sizeof(small_vector) <= kPreferredSmallVectorSizeof` unless // it contradicts 1. static constexpr size_t kPreferredSmallVectorSizeof = 64; // static_assert that sizeof(T) is not "too big". // // Because our policy guarantees at least one inlined element, it is possible // for an arbitrarily large inlined element to allocate an arbitrarily large // amount of inline storage. We generally consider it an antipattern for a // small_vector to allocate an excessive amount of inline storage, so we want // to call attention to these cases and make sure that users are making an // intentional decision if they request a lot of inline storage. // // We want this assertion to trigger in pathological cases, but otherwise // not be too easy to hit. To accomplish that, the cutoff is actually somewhat // larger than kPreferredSmallVectorSizeof (otherwise, // `small_vector>` would be one easy way to trip it, and that // pattern seems useful in practice). // // One wrinkle is that this assertion is in theory non-portable, since // sizeof(T) is in general platform-dependent. However, we don't expect this // to be much of an issue, because most LLVM development happens on 64-bit // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for // 32-bit hosts, dodging the issue. The reverse situation, where development // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a // 64-bit host, is expected to be very rare. static_assert( sizeof(T) <= 256, "You are trying to use a default number of inlined elements for " "`small_vector` but `sizeof(T)` is really big! Please use an " "explicit number of inlined elements with `small_vector` to make " "sure you really want that much inline storage."); // Discount the size of the header itself when calculating the maximum inline // bytes. static constexpr size_t PreferredInlineBytes = kPreferredSmallVectorSizeof - sizeof(small_vector); static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); static constexpr size_t value = NumElementsThatFit == 0 ? 1 : NumElementsThatFit; }; /// This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of /// elements is below that threshold. This allows normal "small" cases to be /// fast without losing generality for large inputs. /// /// \note /// In the absence of a well-motivated choice for the number of inlined /// elements \p N, it is recommended to use \c small_vector (that is, /// omitting the \p N). This will choose a default number of inlined elements /// reasonable for allocation on the stack (for example, trying to keep \c /// sizeof(small_vector) around 64 bytes). /// /// \warning This does not attempt to be exception safe. /// /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h template ::value> class small_vector : public small_vector_impl, small_vector_storage { public: small_vector() : small_vector_impl(N) {} ~small_vector() { // Destroy the constructed elements in the vector. this->destroy_range(this->begin(), this->end()); } explicit small_vector(size_t Size, const T &Value = T()) : small_vector_impl(N) { this->assign(Size, Value); } template ::iterator_category, std::input_iterator_tag>::value>> small_vector(ItTy S, ItTy E) : small_vector_impl(N) { this->append(S, E); } template explicit small_vector(const iterator_range &R) : small_vector_impl(N) { this->append(R.begin(), R.end()); } small_vector(std::initializer_list IL) : small_vector_impl(N) { this->assign(IL); } small_vector(const small_vector &RHS) : small_vector_impl(N) { if (!RHS.empty()) small_vector_impl::operator=(RHS); } small_vector &operator=(const small_vector &RHS) { small_vector_impl::operator=(RHS); return *this; } small_vector(small_vector &&RHS) : small_vector_impl(N) { if (!RHS.empty()) small_vector_impl::operator=(::std::move(RHS)); } small_vector(small_vector_impl &&RHS) : small_vector_impl(N) { if (!RHS.empty()) small_vector_impl::operator=(::std::move(RHS)); } small_vector &operator=(small_vector &&RHS) { small_vector_impl::operator=(::std::move(RHS)); return *this; } small_vector &operator=(small_vector_impl &&RHS) { small_vector_impl::operator=(::std::move(RHS)); return *this; } small_vector &operator=(std::initializer_list IL) { this->assign(IL); return *this; } }; template inline size_t capacity_in_bytes(const small_vector &X) { return X.capacity_in_bytes(); } /// Given a range of type R, iterate the entire range and return a /// small_vector with elements of the vector. This is useful, for example, /// when you want to iterate a range and then sort the results. template small_vector()))>::type>::type, Size> to_vector(R &&Range) { return {std::begin(Range), std::end(Range)}; } inline void *safe_malloc(size_t Sz) { void *Result = std::malloc(Sz); if (Result == nullptr) { // It is implementation-defined whether allocation occurs if the space // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting // non-zero, if the space requested was zero. if (Sz == 0) return safe_malloc(1); throw std::bad_alloc(); } return Result; } inline void *safe_calloc(size_t Count, size_t Sz) { void *Result = std::calloc(Count, Sz); if (Result == nullptr) { // It is implementation-defined whether allocation occurs if the space // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting // non-zero, if the space requested was zero. if (Count == 0 || Sz == 0) return safe_malloc(1); throw std::bad_alloc(); } return Result; } inline void *safe_realloc(void *Ptr, size_t Sz) { void *Result = std::realloc(Ptr, Sz); if (Result == nullptr) { // It is implementation-defined whether allocation occurs if the space // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting // non-zero, if the space requested was zero. if (Sz == 0) return safe_malloc(1); throw std::bad_alloc(); } return Result; } // Check that no bytes are wasted and everything is well-aligned. namespace { struct Struct16B { alignas(16) void *X; }; struct Struct32B { alignas(32) void *X; }; } static_assert(sizeof(small_vector) == sizeof(unsigned) * 2 + sizeof(void *), "wasted space in small_vector size 0"); static_assert(alignof(small_vector) >= alignof(Struct16B), "wrong alignment for 16-byte aligned T"); static_assert(alignof(small_vector) >= alignof(Struct32B), "wrong alignment for 32-byte aligned T"); static_assert(sizeof(small_vector) >= alignof(Struct16B), "missing padding for 16-byte aligned T"); static_assert(sizeof(small_vector) >= alignof(Struct32B), "missing padding for 32-byte aligned T"); static_assert(sizeof(small_vector) == sizeof(unsigned) * 2 + sizeof(void *) * 2, "wasted space in small_vector size 1"); static_assert(sizeof(small_vector) == sizeof(void *) * 2 + sizeof(void *), "1 byte elements have word-sized type for size and capacity"); /// Report that MinSize doesn't fit into this vector's size type. Throws /// std::length_error or calls report_fatal_error. static void report_size_overflow(size_t MinSize, size_t MaxSize); static void report_size_overflow(size_t MinSize, size_t MaxSize) { std::string Reason = "small_vector unable to grow. Requested capacity (" + std::to_string(MinSize) + ") is larger than maximum value for size type (" + std::to_string(MaxSize) + ")"; throw std::length_error(Reason); } /// Report that this vector is already at maximum capacity. Throws /// std::length_error or calls report_fatal_error. static void report_at_maximum_capacity(size_t MaxSize); static void report_at_maximum_capacity(size_t MaxSize) { std::string Reason = "small_vector capacity unable to grow. Already at maximum size " + std::to_string(MaxSize); throw std::length_error(Reason); } // Note: Moving this function into the header may cause performance regression. template static size_t getNewCapacity(size_t MinSize, size_t TSize, size_t OldCapacity) { constexpr size_t MaxSize = (std::numeric_limits::max)(); // Ensure we can fit the new capacity. // This is only going to be applicable when the capacity is 32 bit. if (MinSize > MaxSize) report_size_overflow(MinSize, MaxSize); // Ensure we can meet the guarantee of space for at least one more element. // The above check alone will not catch the case where grow is called with a // default MinSize of 0, but the current capacity cannot be increased. // This is only going to be applicable when the capacity is 32 bit. if (OldCapacity == MaxSize) report_at_maximum_capacity(MaxSize); // In theory 2*capacity can overflow if the capacity is 64 bit, but the // original capacity would never be large enough for this to be a problem. size_t NewCapacity = 2 * OldCapacity + 1; // Always grow. return (std::min)((std::max)(NewCapacity, MinSize), MaxSize); } // Note: Moving this function into the header may cause performance regression. template void *small_vector_base::mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity) { NewCapacity = getNewCapacity(MinSize, TSize, this->capacity()); return safe_malloc(NewCapacity * TSize); } // Note: Moving this function into the header may cause performance regression. template void small_vector_base::grow_pod(void *FirstEl, size_t MinSize, size_t TSize) { size_t NewCapacity = getNewCapacity(MinSize, TSize, this->capacity()); void *NewElts; if (BeginX == FirstEl) { NewElts = safe_malloc(NewCapacity * TSize); // Copy the elements over. No need to run dtors on PODs. memcpy(NewElts, this->BeginX, size() * TSize); } else { // If this wasn't grown from the inline copy, grow the allocated space. NewElts = safe_realloc(this->BeginX, NewCapacity * TSize); } this->BeginX = NewElts; this->Capacity = NewCapacity; } template class paddle::small_vector_base; // Disable the uint64_t instantiation for 32-bit builds. // Both uint32_t and uint64_t instantiations are needed for 64-bit builds. // This instantiation will never be used in 32-bit builds, and will cause // warnings when sizeof(Size_T) > sizeof(size_t). #if SIZE_MAX > UINT32_MAX template class paddle::small_vector_base; // Assertions to ensure this #if stays in sync with SmallVectorSizeType. static_assert(sizeof(SmallVectorSizeType) == sizeof(uint64_t), "Expected small_vector_base variant to be in use."); #else static_assert(sizeof(SmallVectorSizeType) == sizeof(uint32_t), "Expected small_vector_base variant to be in use."); #endif } // namespace paddle namespace std { /// Implement std::swap in terms of small_vector swap. template inline void swap(paddle::small_vector_impl &LHS, paddle::small_vector_impl &RHS) { LHS.swap(RHS); } /// Implement std::swap in terms of small_vector swap. template inline void swap(paddle::small_vector &LHS, paddle::small_vector &RHS) { LHS.swap(RHS); } } // namespace std