# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ["MetaOptimizerBase"] class MetaOptimizerBase(object): def __init__(self, optimizer): pass def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): self.loss = loss self.role_maker = role_maker self.user_defined_optimizer = user_defined_optimizer self.user_defined_strategy = user_defined_strategy def _update_inner_optimier(self, optimizer): self.inner_opt = optimizer def _can_apply(self): return False def _is_graph_out(self): return False def _can_update(self, optimizer): if str(optimizer.__class__.__name__) in self.meta_optimizers_white_list: return True def _disable_strategy(self, dist_strategy): raise NotImplementedError("you should implement disable strategy in {}". format(type(self).__name__)) def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): raise NotImplementedError("meta optimizer not implemented") def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): optimize_ops, params_grads = self.minimize_impl( loss, startup_program, parameter_list, no_grad_set) return optimize_ops, params_grads