/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once namespace paddle { namespace operators { enum ElementwiseType { kUnary = 1, kBinary = 2 }; template struct alignas(sizeof(T) * Size) CudaAlignedVector { T val[Size]; }; template int GetVectorizedSizeImpl(const T *pointer) { uint64_t address = reinterpret_cast(pointer); constexpr int vec4 = std::alignment_of>::value; // NOLINT constexpr int vec2 = std::alignment_of>::value; // NOLINT if (address % vec4 == 0) { return 4; } else if (address % vec2 == 0) { return 2; } return 1; } template int GetVectorizedSize(const std::vector &ins, const std::vector &outs) { int vec_size = 4; for (auto iter = ins.begin(); iter != ins.end(); ++iter) { vec_size = std::min(vec_size, GetVectorizedSizeImpl((*iter)->data())); } for (auto iter = outs.begin(); iter != outs.end(); ++iter) { vec_size = std::min(vec_size, GetVectorizedSizeImpl((*iter)->data())); } return vec_size; } template struct ElementwiseDataWrapper { T *out; const T *in0; const T *in1; __device__ ElementwiseDataWrapper(T *out, const T *in0, const T *in1 = nullptr) : out(out), in0(in0), in1(in1) {} using VecType = CudaAlignedVector; inline __device__ void load_vector(VecType args[], int idx) { const VecType *x_vec = reinterpret_cast(in0); args[0] = x_vec[idx]; if (ET == ElementwiseType::kBinary) { const VecType *y_vec = reinterpret_cast(in1); args[1] = y_vec[idx]; } } inline __device__ void load_scalar(T args[], int idx) { args[0] = in0[idx]; if (ET == ElementwiseType::kBinary) { args[1] = in1[idx]; } } inline __device__ void store_vector(VecType res, int idx) { VecType *out_vec = reinterpret_cast(out); out_vec[idx] = res; } inline __device__ void store_scalar(T res, int idx) { out[idx] = res; } }; template __device__ void VectorizedKernelImpl( ElementwiseDataWrapper data, int size, Functor func, int tid) { using VecType = CudaAlignedVector; VecType ins_vec[ET]; VecType out_vec; T *ins_ptr[ET]; T *out_ptr; #pragma unroll for (int i = 0; i < ET; ++i) { ins_ptr[i] = reinterpret_cast(&(ins_vec[i])); } out_ptr = reinterpret_cast(&out_vec); // load data.load_vector(ins_vec, tid); // compute #pragma unroll for (int i = 0; i < VecSize; ++i) { T ins[ET]; #pragma unroll for (int j = 0; j < ET; ++j) { ins[j] = ins_ptr[j][i]; } out_ptr[i] = func(ins); } // store data.store_vector(out_vec, tid); } template __device__ void ScalarKernelImpl(ElementwiseDataWrapper data, int size, Functor func, int start, int remain) { T ins[ET]; T out; for (int i = 0; i < remain; ++i) { int idx = start + i; // load data.load_scalar(ins, idx); // compute out = func(ins); // store data.store_scalar(out, idx); } } template __global__ void VectorizedKernel(const T *__restrict__ in0, const T *__restrict__ in1, T *out, int size, Functor func) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int remain = size - VecSize * tid; remain = remain > 0 ? remain : 0; if (remain >= VecSize) { auto data = ElementwiseDataWrapper(out, in0, in1); VectorizedKernelImpl(data, size, func, tid); } else { auto data = ElementwiseDataWrapper(out, in0, in1); ScalarKernelImpl(data, size, func, tid * VecSize, remain); } } template __global__ void ScalarKernel(const T *__restrict__ in0, const T *__restrict__ in1, T *out, int size, Functor func) { auto data = ElementwiseDataWrapper(out, in0, in1); int tid = blockIdx.x * blockDim.x + threadIdx.x; int remain = tid < size ? 1 : 0; ScalarKernelImpl(data, size, func, tid, remain); } template void LaunchElementwiseCudaKernel( const platform::CUDADeviceContext &ctx, const std::vector &ins, std::vector *outs, Functor func) { // calculate the max vec_size for all ins and outs auto size = ins[0]->numel(); int vec_size = GetVectorizedSize(ins, *outs); int block_size = PADDLE_CUDA_THREAD_SIZE; int grid_size = ((size + vec_size - 1) / vec_size + block_size - 1) / block_size; const T *in0 = ins[0]->data(); const T *in1 = (ET == ElementwiseType::kBinary) ? ins[1]->data() : nullptr; T *out = (*outs)[0]->data(); // cuda kernel auto stream = ctx.stream(); switch (vec_size) { case 4: VectorizedKernel<<>>( in0, in1, out, size, func); break; case 2: VectorizedKernel<<>>( in0, in1, out, size, func); break; case 1: ScalarKernel<<>>(in0, in1, out, size, func); break; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported vectorized size: %d !", vec_size)); break; } } } // namespace operators } // namespace paddle