/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/meta_tensor.h" namespace phi { // Common InferMeta Functions for multiary operators, The format like: // // 1. The number of input MetaTensor is more than 3: // void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, // const MetaTensor& y, // const MetaTensor& z, // const MetaTensor& w, // ..., // MetaTensor* out) {} // // 2. There are `const vector&` in params: // void [FunctionDesc|OpName]InferMeta(const vector& x, // ..., // MetaTensor* out) {} // // NOTE: The InferMeta Functions in this file are arranged in alphabetic order. std::vector GetMetaTensorsDim(const std::vector& tensors); void AdadeltaInferMeta(const MetaTensor& param, const MetaTensor& grad, const MetaTensor& avg_squared_grad, const MetaTensor& avg_squared_update, float rho, float epsilon, MetaTensor* param_out, MetaTensor* avg_squared_grad_out, MetaTensor* avg_squared_update_out); void AdamaxInferMeta(const MetaTensor& param, const MetaTensor& grad, const MetaTensor& learning_rate, const MetaTensor& moment, const MetaTensor& inf_norm, const MetaTensor& beta1_pow, float beta1, float beta2, float epsilon, MetaTensor* param_out, MetaTensor* moment_out, MetaTensor* inf_norm_out); void AdamInferMeta(const MetaTensor& param, const MetaTensor& grad, const MetaTensor& learning_rate, const MetaTensor& moment1, const MetaTensor& moment2, const MetaTensor& beta1_pow, const MetaTensor& beta2_pow, paddle::optional master_param, paddle::optional skip_update, const Scalar& beta1, const Scalar& beta2, const Scalar& epsilon, bool lazy_mode, int64_t min_row_size_to_use_multithread, bool multi_precision, bool use_global_beta_pow, MetaTensor* param_out, MetaTensor* moment1_out, MetaTensor* moment2_out, MetaTensor* beta1_pow_out, MetaTensor* beta2_pow_out, MetaTensor* master_param_outs); void AdamwInferMeta(const MetaTensor& param, const MetaTensor& grad, const MetaTensor& learning_rate, const MetaTensor& moment1, const MetaTensor& moment2, const MetaTensor& beta1_pow, const MetaTensor& beta2_pow, paddle::optional master_param, paddle::optional skip_update, const Scalar& beta1, const Scalar& beta2, const Scalar& epsilon, float lr_ratio, float coeff, bool with_decay, bool lazy_mode, int64_t min_row_size_to_use_multithread, bool multi_precision, bool use_global_beta_pow, MetaTensor* param_out, MetaTensor* moment1_out, MetaTensor* moment2_out, MetaTensor* beta1_pow_out, MetaTensor* beta2_pow_out, MetaTensor* master_param_outs); void AucInferMeta(const MetaTensor& input, const MetaTensor& label, const MetaTensor& stat_pos, const MetaTensor& stat_neg, const std::string& curve, int num_thresholds, int slide_steps, MetaTensor* auc, MetaTensor* stat_pos_out, MetaTensor* stat_neg_out, MetaConfig config = MetaConfig()); void BatchNormInferMeta(const MetaTensor& x, const MetaTensor& scale, const MetaTensor& bias, const MetaTensor& mean, const MetaTensor& variance, float momentum, float epsilon, const std::string& data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu, MetaTensor* y, MetaTensor* mean_out, MetaTensor* variance_out, MetaTensor* saved_mean, MetaTensor* saved_variance, MetaTensor* reserve_space, MetaConfig config = MetaConfig()); void BatchNormInferInferMeta(const MetaTensor& x, const MetaTensor& scale, const MetaTensor& bias, const MetaTensor& mean, const MetaTensor& variance, float momentum, float epsilon, const std::string& data_layout, MetaTensor* y, MetaTensor* mean_out, MetaTensor* variance_out, MetaConfig config = MetaConfig()); void BilinearTensorProductInferMeta(const MetaTensor& x, const MetaTensor& y, const MetaTensor& weight, paddle::optional bias, MetaTensor* out, MetaConfig config = MetaConfig()); void BroadcastTensorsInferMeta(const std::vector& x, std::vector out); void ConcatInferMeta(const std::vector& x, const Scalar& axis_scalar, MetaTensor* out, MetaConfig config = MetaConfig()); void DeformableConvInferMeta(const MetaTensor& x, const MetaTensor& offset, const MetaTensor& filter, paddle::optional mask, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, int deformable_groups, int groups, int im2col_step, MetaTensor* out, MetaConfig config = MetaConfig()); void HierarchicalSigmoidInferMeta(const MetaTensor& x, const MetaTensor& w, const MetaTensor& label, paddle::optional path, paddle::optional code, paddle::optional bias, int num_classes, bool remote_prefetch, int trainer_id, const std::vector& height_sections, const std::vector& epmap, const std::vector& table_names, bool is_sparse, MetaTensor* out, MetaTensor* pre_out, MetaTensor* w_out); void InterpolateInferMeta( const MetaTensor& x, paddle::optional out_size, paddle::optional> size_tensor, paddle::optional scale_tensor, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, MetaTensor* output, MetaConfig config = MetaConfig()); void MultiDotInferMeta(const std::vector& x, MetaTensor* out); void MultiplexInferMeta(const std::vector& ins, const MetaTensor& ids, MetaTensor* out); void PsroiPoolInferMeta(const MetaTensor& x, const MetaTensor& rois, paddle::optional rois_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale, MetaTensor* out); void RnnInferMeta(const MetaTensor& x, const std::vector& pre_state, const std::vector& weight_list, paddle::optional sequence_length, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, const std::string& mode, int seed, bool is_test, MetaTensor* out, MetaTensor* dropout_state, std::vector state, MetaTensor* reserve); void StackInferMeta(const std::vector& x, int axis, MetaTensor* out); void WarpctcInferMeta(const MetaTensor& logits, const MetaTensor& label, const paddle::optional logits_length, const paddle::optional labels_length, int blank, bool norm_by_times, MetaTensor* warpctc_grad, MetaTensor* loss); void WhereInferMeta(const MetaTensor& condition, const MetaTensor& x, const MetaTensor& y, MetaTensor* out); void GraphReindexInferMeta(const MetaTensor& x, const MetaTensor& neighbors, const MetaTensor& count, paddle::optional hashtable_value, paddle::optional hashtable_index, bool flag_buffer_hashtable, MetaTensor* reindex_src, MetaTensor* reindex_dst, MetaTensor* out_nodes); void GraphSampleNeighborsInferMeta( const MetaTensor& row, const MetaTensor& col_ptr, const MetaTensor& x, paddle::optional eids, paddle::optional perm_buffer, int sample_size, bool return_eids, bool flag_perm_buffer, MetaTensor* out, MetaTensor* out_count, MetaTensor* out_eids); void Yolov3LossInferMeta(const MetaTensor& x, const MetaTensor& gt_box, const MetaTensor& gt_label, const paddle::optional gt_score, const std::vector& anchors, const std::vector& anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth, float scale_x_y, MetaTensor* loss, MetaTensor* objectness_mask, MetaTensor* gt_match_mask); } // namespace phi