// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/details/memory_optimize_helper.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/pass.h" namespace paddle { namespace framework { namespace details { constexpr char kAllOpDescs[] = "all_op_descs"; std::vector SortOpLikeDescOrder(const ir::Graph& graph); class ControlFlowGraph; class MemoryOptimizePass : public ir::Pass { protected: std::unique_ptr ApplyImpl( std::unique_ptr graph) const override; private: // fill the variable map(var_nodes) by version. void InitSSAGraphNodes() const; // update program descs void RenameVarInGraphDesc(const std::string& var, const std::string& cache_var, size_t idx) const; // update ir nodes void RenameVarInGraphNode(const std::string& var, const std::string& cache_var, size_t idx, ir::Graph* graph) const; void SubGraphOptimize(OpDesc* op_desc) const; // 1. scan op with subblock and collect the output/input vars. // while, while_grad, conditional_block // 2. scan distributed ops and collect the output/input vars void CollectSkipVarsSet(const std::unordered_set&) const; private: // Reuse Node Pool, Owned. mutable OrderedNodeList pool_; // controlflow Graph mutable std::unique_ptr cfg_; // skip set mutable std::unordered_set skip_set_; // var nodes mutable std::map> var_nodes_; }; class ControlFlowGraph { public: ControlFlowGraph() = default; // For IR Graph in parallelexecutor explicit ControlFlowGraph(const ir::Graph& graph); void LiveVariableAnalysis(); void RenameVarInCFGGraph(const std::string& old_node, const std::string& new_node, int begin_idx); const std::set LiveIn(ir::Node* op) const; const std::set LiveOut(ir::Node* op) const; const std::set Use(ir::Node* op) const; const std::vector Ops() const; std::vector& Ops(); // for ssa-graph nodes ir::Node* GetNodeFromVarName(const std::string& name, ir::Node* op) const; private: void BuildCFGGraph(); void ConnectNodes(); using NodeListMap = std::unordered_map>; using VarSetMap = std::map>; // successors ops use the output variables. NodeListMap successors_; // predecessors ops generated input variables. NodeListMap predecessors_; // variables lived before run current op. VarSetMap live_in_; // variables lived after run current op. VarSetMap live_out_; VarSetMap uses_; // op inputs VarSetMap defs_; // op outputs std::vector ops_; // op sequence by topology sort }; } // namespace details } // namespace framework } // namespace paddle