# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import unittest import warnings import numpy as np import random import six import struct import time import itertools import collections from collections import defaultdict import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.backward import append_backward from paddle.fluid.op import Operator from paddle.fluid.executor import Executor from paddle.fluid.framework import Program, OpProtoHolder, Variable from testsuite import create_op, set_input, append_input_output, append_loss_ops from paddle.fluid import unique_name from white_list import op_accuracy_white_list, check_shape_white_list, compile_vs_runtime_white_list, no_check_set_white_list from white_list import op_threshold_white_list, no_grad_set_white_list from op_test import OpTest, _set_use_system_allocator, get_numeric_gradient class XPUOpTest(OpTest): @classmethod def setUpClass(cls): '''Fix random seeds to remove randomness from tests''' cls.use_xpu = True cls.use_mkldnn = False super().setUpClass() @classmethod def tearDownClass(cls): """Restore random seeds""" def is_empty_grad_op(op_type): all_op_kernels = core._get_all_register_op_kernels() grad_op = op_type + '_grad' if grad_op in all_op_kernels.keys(): grad_op_kernels = all_op_kernels[grad_op] for grad_op_kernel in grad_op_kernels: if 'XPU' in grad_op_kernel: return False return True if cls.dtype == np.float16: place = paddle.XPUPlace(0) if core.is_float16_supported(place) == False: return super().tearDownClass() def _get_places(self): places = [fluid.XPUPlace(0)] return places def check_output_with_place(self, place, atol=0.001, no_check_set=None, equal_nan=False, check_dygraph=True, inplace_atol=None, check_eager=False): self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs) #xpu not support float64 if self.dtype == np.float64: return if place == None: place = paddle.XPUPlace(0) if self.dtype == np.float16: if core.is_float16_supported(place) == False: return if self.dtype == np.float16: atol = 0.1 return super().check_output_with_place( place, atol, no_check_set, equal_nan, check_dygraph, inplace_atol) def check_grad_with_place(self, place, inputs_to_check, output_names, no_grad_set=None, numeric_grad_delta=0.005, in_place=False, max_relative_error=0.005, user_defined_grads=None, user_defined_grad_outputs=None, check_dygraph=True, numeric_place=None, check_eager=False): if place == None: place = paddle.XPUPlace(0) if self.dtype == np.float64: return if self.dtype == np.float16: if core.is_float16_supported(place) == False: return if self.dtype == np.float16: max_relative_error = 1.0 return super().check_grad_with_place( place, inputs_to_check, output_names, no_grad_set, numeric_grad_delta, in_place, max_relative_error, user_defined_grads, user_defined_grads, check_dygraph) a1 = self.get_grad_with_place( place, inputs_to_check, output_names, no_grad_set=no_grad_set) a2 = self.get_grad_with_place( place, inputs_to_check, output_names, no_grad_set=no_grad_set) a3 = self.get_grad_with_place( paddle.CPUPlace(), inputs_to_check, output_names, no_grad_set=no_grad_set) self._assert_is_close(a1, a2, inputs_to_check, 0.00000001, "Gradient Check On two xpu") self._assert_is_close(a1, a3, inputs_to_check, max_relative_error, "Gradient Check On cpu & xpu") def get_grad_with_place(self, place, inputs_to_check, output_names, no_grad_set=None, numeric_grad_delta=0.005, in_place=False, max_relative_error=0.005, user_defined_grads=None, check_dygraph=True): self.scope = core.Scope() op_inputs = self.inputs if hasattr(self, "inputs") else dict() op_outputs = self.outputs if hasattr(self, "outputs") else dict() op_attrs = self.attrs if hasattr(self, "attrs") else dict() self._check_grad_helper() if self.dtype == np.float64 and \ self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST: numeric_grad_delta = 1e-5 max_relative_error = 1e-7 cache_list = None if hasattr(self, "cache_name_list"): cache_list = self.cache_name_list # oneDNN numeric gradient should use CPU kernel use_onednn = False if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True: op_attrs["use_mkldnn"] = False use_onednn = True self.op = create_op( self.scope, self.op_type, op_inputs, op_outputs, op_attrs, cache_list=cache_list) if use_onednn: op_attrs["use_mkldnn"] = True if no_grad_set is None: no_grad_set = set() else: if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST ) and ( self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST ) and (not self.is_bfloat16_op()): raise AssertionError("no_grad_set must be None, op_type is " + self.op_type + " Op.") for input_to_check in inputs_to_check: set_input(self.scope, self.op, self.inputs, place) if not type(output_names) is list: output_names = [output_names] analytic_grads = self._get_gradient(inputs_to_check, place, output_names, no_grad_set) return analytic_grads