# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import copy import six import functools from . import layers from . import framework from . import core __all__ = [ 'set_gradient_clip', 'ErrorClipByValue', 'GradientClipByValue', 'GradientClipByNorm', 'GradientClipByGlobalNorm', ] class BaseErrorClipAttr(object): def __str__(self): raise NotImplementedError() def _append_clip_op(self, block, grad_name): raise NotImplementedError() class ErrorClipByValue(BaseErrorClipAttr): """ Clips tensor values to the range [min, max]. Given a tensor t, this operation clips its value to min and max inplace. - Any values less than min are set to min. - Any values greater than max are set to max. Args: max (float): The maximum value to clip by. min (float, optional): The minimum value to clip by. if not set by user, \ will be set to -max by framework. Examples: .. code-block:: python import paddle.fluid as fluid BATCH_SIZE = 128 CLIP_MAX = 2e-6 CLIP_MIN = -1e-6 prog = fluid.framework.Program() with fluid.program_guard(main_program=prog): image = fluid.layers.data(name='x', shape=[784], dtype='float32') hidden1 = fluid.layers.fc(input=image, size=128, act='relu') hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') label = fluid.layers.data(name='y', shape=[1], dtype='int64') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) prog_clip = prog.clone() prog_clip.block(0).var(hidden1.name)._set_error_clip( fluid.clip.ErrorClipByValue( max=CLIP_MAX, min=CLIP_MIN) """ def __init__(self, max, min=None): max = float(max) if min is None: min = -max else: min = float(min) self.max = max self.min = min def __str__(self): return "ByValue, min=%f, max=%f" % (self.min, self.max) def _append_clip_op(self, block, grad_name): clip_op_desc = block.desc.append_op() clip_op_desc.set_type("clip") clip_op_desc.set_input("X", [grad_name]) clip_op_desc.set_output("Out", [grad_name]) clip_op_desc._set_attr("min", self.min) clip_op_desc._set_attr("max", self.max) def error_clip_callback(block, context): # the context is a grad_to_var map grad_to_var = context op_desc = block.desc.op(block.desc.op_size() - 1) for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]: fwd_var = block._var_recursive(grad_to_var[grad_n]) error_clip = getattr(fwd_var, "error_clip", None) if not (error_clip is None or isinstance(error_clip, BaseErrorClipAttr)): raise TypeError( "Variable's error_clip should be an instance of BaseErrorClipAttr or None." ) if error_clip is not None: error_clip._append_clip_op(block, grad_n) class BaseGradientClipAttr(object): def __str__(self): raise NotImplementedError() def _process_context(self, context, param, grad): raise NotImplementedError() def _create_operators(self, param, grad): raise NotImplementedError() class NullGradientClipAttr(BaseGradientClipAttr): def __str__(self): return "Null" def _process_context(self, context, param, grad): pass def _create_operators(self, param, grad): return param, grad class GradientClipByValue(BaseGradientClipAttr): """ Clips gradient values to the range [min, max]. Given a tensor t, this operation clips its value to min and max inplace. - Any values less than min are set to min. - Any values greater than max are set to max. Args: max (float): The maximum value to clip by. min (float, optional): The minimum value to clip by. if not set by user, \ will be set to -max by framework. Examples: .. code-block:: python import paddle.fluid as fluid w_param_attrs = fluid.ParamAttr(name=None, initializer=fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0), learning_rate=1.0, regularizer=fluid.regularizer.L1Decay(1.0), trainable=True, gradient_clip=fluid.clip.GradientClipByValue(-1.0, 1.0)) x = fluid.layers.data(name='x', shape=[10], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs) """ def __init__(self, max, min=None): max = float(max) if min is None: min = -max else: min = float(min) self.max = max self.min = min def __str__(self): return "ByValue, min=%f, max=%f" % (self.min, self.max) def _process_context(self, context, param, grad): pass def _create_operators(self, param, grad): new_grad = layers.clip(x=grad, min=self.min, max=self.max) return param, new_grad class GradientClipByNorm(BaseGradientClipAttr): """ Clips tensor values to a maximum L2-norm. This operator limits the L2 norm of the input :math:`X` within :math:`max\_norm`. If the L2 norm of :math:`X` is less than or equal to :math:`max\_norm`, :math:`Out` will be the same as :math:`X`. If the L2 norm of :math:`X` is greater than :math:`max\_norm`, :math:`X` will be linearly scaled to make the L2 norm of :math:`Out` equal to :math:`max\_norm`, as shown in the following formula: .. math:: Out = \\frac{max\_norm * X}{norm(X)}, where :math:`norm(X)` represents the L2 norm of :math:`X`. Args: clip_norm (float): The maximum norm value Examples: .. code-block:: python import paddle.fluid as fluid w_param_attrs = fluid.ParamAttr(name=None, initializer=fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0), learning_rate=1.0, regularizer=fluid.regularizer.L1Decay(1.0), trainable=True, gradient_clip=fluid.clip.GradientClipByNorm(clip_norm=2.0)) x = fluid.layers.data(name='x', shape=[10], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs) """ def __init__(self, clip_norm): self.clip_norm = clip_norm def __str__(self): return "ByNorm, clip_norm=%f" % self.clip_norm def _process_context(self, context, param, grad): pass def _create_operators(self, param, grad): new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm) return param, new_grad class GradientClipByGlobalNorm(BaseGradientClipAttr): """ Clips values of multiple tensors by the ratio of the sum of their norms. Given a list of tensors t_list, and a clipping ratio clip_norm, this operation returns a list of clipped tensors list_clipped and the global norm (global_norm) of all tensors in t_list. To perform the clipping, the values :math:`t\_list[i]` are set to: .. math:: t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)} where: .. math:: global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2} If :math:`clip\_norm > global\_norm` then the entries in t_list remain as they are, otherwise they're all shrunk by the global ratio. Args: clip_norm (float): The maximum norm value group_name (str, optional): The group name for this clip. Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.framework.Program() startup_program = fluid.framework.Program() with fluid.program_guard( main_program=prog, startup_program=startup_program): image = fluid.layers.data(name='x', shape=[784], dtype='float32') label = fluid.layers.data(name='y', shape=[1], dtype='int64') hidden1 = fluid.layers.fc(input=image, size=128, act='relu') hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) prog_clip = prog.clone() avg_cost_clip = prog_clip.block(0).var(avg_cost.name) p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip) with fluid.program_guard(main_program=prog_clip): fluid.clip.set_gradient_clip( fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0)) p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip) """ def __init__(self, clip_norm, group_name="default_group"): if not isinstance(group_name, six.string_types): raise TypeError("'group_name' must be a %s." % (six.string_types)) self.clip_norm = clip_norm self.group_name = group_name def __str__(self): return "ByGlobalNorm, group_name=%s, clip_norm=%f" % (self.group_name, self.clip_norm) def _process_context(self, context, param, grad): if self.group_name not in context: context[self.group_name] = [] context[self.group_name + "_clip_value"] = self.clip_norm context[self.group_name + "_clip"] = layers.fill_constant( shape=[1], dtype="float32", value=self.clip_norm) else: if not self.clip_norm == context[self.group_name + "_clip_value"]: raise ValueError( "All parameters' 'clip_norm' of a same group should be the same" ) merge_grad = grad if grad.type == core.VarDesc.VarType.SELECTED_ROWS: merge_grad = layers.merge_selected_rows(grad) merge_grad = layers.get_tensor_from_selected_rows(merge_grad) square = layers.square(merge_grad) local_norm_var = layers.reduce_sum(input=square) context[self.group_name].append(local_norm_var) self.context = context def _create_operators(self, param, grad): group_scale_name = self.group_name + "_scale" if group_scale_name not in self.context: group_norm_var = layers.sums(input=self.context[self.group_name]) group_norm_var = layers.sqrt(x=group_norm_var) clip_var = self.context[self.group_name + "_clip"] group_scale_var = layers.elementwise_div( x=clip_var, y=layers.elementwise_max( x=clip_var, y=group_norm_var)) assert group_scale_var.shape == (1, ) self.context[group_scale_name] = group_scale_var new_grad = layers.elementwise_mul( x=grad, y=self.context[group_scale_name]) return param, new_grad @framework.dygraph_not_support def set_gradient_clip(clip, param_list=None, program=None): """ To specify parameters that require gradient clip. Args: clip(BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr, for example :ref:`api_fluid_clip_GradientClipByGlobalNorm` , which describes the type and detailed attributes of required gradient clip. param_list(list(Variable), optional): Parameters that require gradient clip. It can be a list of parameter or a list of parameter's name. Default None, meaning that all parameters in the program will be included. program(Program, optional): The program where parameters are located. Default None, meaning that using :ref:`api_fluid_default_main_program` . Returns: None Examples: .. code-block:: python import paddle.fluid as fluid def network(): image = fluid.layers.data(name='image', shape=[28], dtype='float32') param_attr1 = fluid.ParamAttr("fc1_param") fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1) param_attr2 = fluid.ParamAttr("fc2_param") fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2) loss = fluid.layers.reduce_mean(fc2) return loss # network 1: clip all parameter gradient with fluid.program_guard(fluid.Program(), fluid.Program()): loss = network() fluid.clip.set_gradient_clip( fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0)) sgd = fluid.optimizer.SGD(learning_rate=1e-3) sgd.minimize(loss) # network 2: clip parameter gradient by name with fluid.program_guard(fluid.Program(), fluid.Program()): loss = network() fluid.clip.set_gradient_clip( fluid.clip.GradientClipByValue(min=-1.0, max=1.0), param_list=["fc1_param", "fc2_param"]) sgd = fluid.optimizer.SGD(learning_rate=1e-3) sgd.minimize(loss) # network 3: clip parameter gradient by var with fluid.program_guard(fluid.Program(), fluid.Program()): loss = network() param_var1 = fluid.default_main_program().global_block().var("fc1_param") param_var2 = fluid.default_main_program().global_block().var("fc2_param") fluid.clip.set_gradient_clip( fluid.clip.GradientClipByValue(min=-1.0, max=1.0), param_list=[param_var1, param_var2]) sgd = fluid.optimizer.SGD(learning_rate=1e-3) sgd.minimize(loss) """ if not isinstance(clip, BaseGradientClipAttr): raise TypeError( "'clip' should be an instance of BaseGradientClipAttr's derived class" ) if program is None: program = framework.default_main_program() if param_list is None: param_list = program.block(0).all_parameters() if all(isinstance(elem, six.string_types) for elem in param_list): param_list = [program.block(0).var(elem) for elem in param_list] if not all(isinstance(elem, framework.Parameter) for elem in param_list): raise TypeError( "'param_list' should be a list of Parameter or basestring(parameter's name)." ) for param in param_list: param.gradient_clip_attr = copy.deepcopy(clip) def append_gradient_clip_ops(param_grads): context = dict() for p, g in param_grads: if g is None: continue with p.block.program._optimized_guard( [p, g]), framework.name_scope('append_clip'): clip_attr = getattr(p, 'gradient_clip_attr', NullGradientClipAttr()) if clip_attr is None: clip_attr = NullGradientClipAttr() if not isinstance(clip_attr, BaseGradientClipAttr): raise TypeError( "clip attribute should be an instance of BaseGradientClipAttr" ) clip_attr._process_context(context=context, param=p, grad=g) res = [] for p, g in param_grads: if g is None: continue with p.block.program._optimized_guard( [p, g]), framework.name_scope('append_graident_clip'): res.append(clip_attr._create_operators(param=p, grad=g)) return res ClipByValue = GradientClipByValue ClipByNorm = GradientClipByNorm ClipByGlobalNorm = GradientClipByGlobalNorm