/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/jit_kernel.h" #include // for exp #include #include "paddle/fluid/operators/math/jit_kernel_macro.h" #ifdef PADDLE_WITH_MKLML #include "paddle/fluid/platform/dynload/mklml.h" #endif #ifdef __AVX__ #include #endif namespace paddle { namespace operators { namespace math { #ifdef __AVX__ namespace detail { __m256 Exp(__m256 a); } // namespace detail #endif namespace jitkernel { namespace jit = platform::jit; /* VExp JitKernel */ template class VExpKernelImpl : public VExpKernel { public: explicit VExpKernelImpl(int d) : VExpKernel() { this->num_ = d; } void Compute(const T* x, T* y) const override { for (int i = 0; i < this->num_; ++i) { y[i] = std::exp(x[i]); } } }; #ifdef PADDLE_WITH_MKLML #define MKL_FLOAT(isa, block) \ template <> \ void VExpKernelImpl::Compute(const float* x, float* y) \ const { \ platform::dynload::vsExp(this->num_, x, y); \ } #define MKL_DOUBLE(isa, block) \ template <> \ void VExpKernelImpl::Compute(const double* x, double* y) \ const { \ platform::dynload::vdExp(this->num_, x, y); \ } FOR_EACH_ISA(MKL_FLOAT, kLT8); FOR_EACH_ISA(MKL_FLOAT, kGT8LT16); FOR_EACH_ISA(MKL_FLOAT, kGT16); FOR_EACH_ISA_BLOCK(MKL_DOUBLE); #endif #define INTRI8_FLOAT(isa) \ template <> \ void VExpKernelImpl::Compute(const float* x, float* y) \ const { \ __m256 tmp = _mm256_loadu_ps(x); \ _mm256_storeu_ps(y, detail::Exp(tmp)); \ } #define INTRI16_FLOAT(isa) \ template <> \ void VExpKernelImpl::Compute(const float* x, float* y) \ const { \ __m256 tmp0 = _mm256_loadu_ps(x); \ __m256 tmp1 = _mm256_loadu_ps(x + 8); \ tmp0 = detail::Exp(tmp0); \ tmp1 = detail::Exp(tmp1); \ _mm256_storeu_ps(y, tmp0); \ _mm256_storeu_ps(y + 8, tmp1); \ } #ifdef __AVX__ INTRI8_FLOAT(jit::avx); INTRI16_FLOAT(jit::avx); #endif #ifdef __AVX2__ INTRI8_FLOAT(jit::avx2); INTRI16_FLOAT(jit::avx2); #endif #ifdef __AVX512F__ INTRI8_FLOAT(jit::avx512f); INTRI16_FLOAT(jit::avx512f); #endif // TODO(TJ): eq16 test and complete avx512 #undef INTRI8_FLOAT #undef INTRI16_FLOAT #undef MKL_FLOAT #undef MKL_DOUBLE REGISTER_JITKERNEL(vexp, VExpKernel); /* VSigmoid JitKernel */ template class VSigmoidKernelImpl : public VSigmoidKernel { public: explicit VSigmoidKernelImpl(int d) : VSigmoidKernel() { this->num_ = d; vexp_ = KernelPool::Instance().template Get>(d); } void Compute(const T* x, T* y) const override { const T min = SIGMOID_THRESHOLD_MIN; const T max = SIGMOID_THRESHOLD_MAX; for (int i = 0; i < this->num_; ++i) { y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]); y[i] = static_cast(0) - y[i]; } vexp_->Compute(y, y); for (int i = 0; i < this->num_; ++i) { y[i] = static_cast(1) / (static_cast(1) + y[i]); } } private: std::shared_ptr> vexp_; }; #define INTRI_SIGMOID(tmp, min, max) \ tmp = _mm256_max_ps(tmp, min); \ tmp = _mm256_min_ps(tmp, max); \ tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \ tmp = detail::Exp(tmp); \ tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \ tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp) #define INTRI8_FLOAT(isa) \ template <> \ void VSigmoidKernelImpl::Compute(const float* x, float* y) \ const { \ __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \ __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \ __m256 tmp = _mm256_loadu_ps(x); \ INTRI_SIGMOID(tmp, min, max); \ _mm256_storeu_ps(y, tmp); \ } #define INTRI16_FLOAT(isa) \ template <> \ void VSigmoidKernelImpl::Compute(const float* x, \ float* y) const { \ __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \ __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \ __m256 tmp0 = _mm256_loadu_ps(x); \ __m256 tmp1 = _mm256_loadu_ps(x + 8); \ INTRI_SIGMOID(tmp0, min, max); \ INTRI_SIGMOID(tmp1, min, max); \ _mm256_storeu_ps(y, tmp0); \ _mm256_storeu_ps(y + 8, tmp1); \ } #define INTRI_GT8LT16_FLOAT(isa) \ template <> \ VSigmoidKernelImpl::VSigmoidKernelImpl(int d) \ : VSigmoidKernel() { \ this->num_ = d; \ this->end_ = AVX_FLOAT_BLOCK; \ this->rest_ = d - this->end_; \ vexp_ = \ KernelPool::Instance().template Get>(this->rest_); \ } \ template <> \ void VSigmoidKernelImpl::Compute(const float* x, \ float* y) const { \ __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \ __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \ __m256 tmp = _mm256_loadu_ps(x); \ INTRI_SIGMOID(tmp, min, max); \ _mm256_storeu_ps(y, tmp); \ const float min_ = SIGMOID_THRESHOLD_MIN; \ const float max_ = SIGMOID_THRESHOLD_MAX; \ for (int i = this->end_; i < this->num_; ++i) { \ y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \ y[i] = 0.f - y[i]; \ } \ vexp_->Compute(y + this->end_, y + this->end_); \ for (int i = this->end_; i < this->num_; ++i) { \ y[i] = 1.f / (1.f + y[i]); \ } \ } #define INTRI_GT16_FLOAT(isa) \ template <> \ VSigmoidKernelImpl::VSigmoidKernelImpl(int d) \ : VSigmoidKernel() { \ this->num_ = d; \ this->rest_ = d % AVX_FLOAT_BLOCK; \ this->end_ = d - this->rest_; \ vexp_ = \ KernelPool::Instance().template Get>(this->rest_); \ } \ template <> \ void VSigmoidKernelImpl::Compute(const float* x, \ float* y) const { \ __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \ __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \ for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \ __m256 tmp = _mm256_loadu_ps(x + i); \ INTRI_SIGMOID(tmp, min, max); \ _mm256_storeu_ps(y + i, tmp); \ } \ const float min_ = SIGMOID_THRESHOLD_MIN; \ const float max_ = SIGMOID_THRESHOLD_MAX; \ for (int i = this->end_; i < this->num_; ++i) { \ y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \ y[i] = 0.f - y[i]; \ } \ vexp_->Compute(y + this->end_, y + this->end_); \ for (int i = this->end_; i < this->num_; ++i) { \ y[i] = 1.f / (1.f + y[i]); \ } \ } #ifdef __AVX__ INTRI8_FLOAT(jit::avx); INTRI16_FLOAT(jit::avx); INTRI_GT8LT16_FLOAT(jit::avx); INTRI_GT16_FLOAT(jit::avx); #endif #ifdef __AVX2__ INTRI8_FLOAT(jit::avx2); INTRI16_FLOAT(jit::avx2); // INTRI_GT8LT16_FLOAT(jit::avx2); // INTRI_GT16_FLOAT(jit::avx2); #endif #ifdef __AVX512F__ INTRI8_FLOAT(jit::avx512f); INTRI16_FLOAT(jit::avx512f); // INTRI_GT8LT16_FLOAT(jit::avx512f); // INTRI_GT16_FLOAT(jit::avx512f); #endif #undef INTRI8_FLOAT #undef INTRI16_FLOAT #undef INTRI_GT8LT16_FLOAT #undef INTRI_GT16_FLOAT #undef INTRI_VSIGMOID REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel); /* VTanh JitKernel */ template class VTanhKernelImpl : public VTanhKernel { public: explicit VTanhKernelImpl(int d) : VTanhKernel() { this->num_ = d; vscal_ = KernelPool::Instance().template Get>(d); vsigmoid_ = KernelPool::Instance().template Get>(d); vaddbias_ = KernelPool::Instance().template Get>(d); } void Compute(const T* x, T* y) const override { vscal_->Compute(static_cast(2), x, y); vsigmoid_->Compute(y, y); vscal_->Compute(static_cast(2), y); vaddbias_->Compute(static_cast(-1), y, y); } private: std::shared_ptr> vscal_; std::shared_ptr> vsigmoid_; std::shared_ptr> vaddbias_; }; #define INTRI_VTANH(tmp) \ tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp); \ tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \ tmp = detail::Exp(tmp); \ tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \ tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp); \ tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f)) #define INTRI8_FLOAT(isa) \ template <> \ void VTanhKernelImpl::Compute(const float* x, float* y) \ const { \ __m256 tmp = _mm256_loadu_ps(x); \ INTRI_VTANH(tmp); \ _mm256_storeu_ps(y, tmp); \ } #define INTRI16_FLOAT(isa) \ template <> \ void VTanhKernelImpl::Compute(const float* x, float* y) \ const { \ __m256 tmp0 = _mm256_loadu_ps(x); \ __m256 tmp1 = _mm256_loadu_ps(x + 8); \ INTRI_VTANH(tmp0); \ INTRI_VTANH(tmp1); \ _mm256_storeu_ps(y, tmp0); \ _mm256_storeu_ps(y + 8, tmp1); \ } #define INTRI_GT8LT16_FLOAT(isa) \ template <> \ VTanhKernelImpl::VTanhKernelImpl(int d) \ : VTanhKernel() { \ this->num_ = d; \ this->end_ = AVX_FLOAT_BLOCK; \ this->rest_ = d - this->end_; \ vscal_ = \ KernelPool::Instance().template Get>(this->rest_); \ vsigmoid_ = KernelPool::Instance().template Get>( \ this->rest_); \ vaddbias_ = KernelPool::Instance().template Get>( \ this->rest_); \ } \ template <> \ void VTanhKernelImpl::Compute(const float* x, \ float* y) const { \ __m256 tmp = _mm256_loadu_ps(x); \ INTRI_VTANH(tmp); \ _mm256_storeu_ps(y, tmp); \ x += AVX_FLOAT_BLOCK; \ y += AVX_FLOAT_BLOCK; \ vscal_->Compute(2.f, x, y); \ vsigmoid_->Compute(y, y); \ vscal_->Compute(2.f, y); \ vaddbias_->Compute(-1.f, y, y); \ } #define INTRI_GT16_FLOAT(isa) \ template <> \ VTanhKernelImpl::VTanhKernelImpl(int d) \ : VTanhKernel() { \ this->num_ = d; \ this->rest_ = d % AVX_FLOAT_BLOCK; \ this->end_ = d - this->rest_; \ vscal_ = \ KernelPool::Instance().template Get>(this->rest_); \ vsigmoid_ = KernelPool::Instance().template Get>( \ this->rest_); \ vaddbias_ = KernelPool::Instance().template Get>( \ this->rest_); \ } \ template <> \ void VTanhKernelImpl::Compute(const float* x, float* y) \ const { \ for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \ __m256 tmp = _mm256_loadu_ps(x + i); \ INTRI_VTANH(tmp); \ _mm256_storeu_ps(y + i, tmp); \ } \ x += this->end_; \ y += this->end_; \ vscal_->Compute(2.f, x, y); \ vsigmoid_->Compute(y, y); \ vscal_->Compute(2.f, y); \ vaddbias_->Compute(-1.f, y, y); \ } #ifdef __AVX__ INTRI8_FLOAT(jit::avx); INTRI16_FLOAT(jit::avx); INTRI_GT8LT16_FLOAT(jit::avx); INTRI_GT16_FLOAT(jit::avx); #endif #ifdef __AVX2__ INTRI8_FLOAT(jit::avx2); INTRI16_FLOAT(jit::avx2); // maybe use avx at gt8lt16 and gt16 #endif #ifdef __AVX512F__ INTRI8_FLOAT(jit::avx512f); INTRI16_FLOAT(jit::avx512f); // maybe use avx at gt8lt16 and gt16 #endif #undef INTRI8_FLOAT #undef INTRI16_FLOAT #undef INTRI_GT8LT16_FLOAT #undef INTRI_GT16_FLOAT #undef INTRI_VTANH REGISTER_JITKERNEL(vtanh, VTanhKernel); #undef JITKERNEL_NEW_ACT_IMPL } // namespace jitkernel } // namespace math } // namespace operators } // namespace paddle