# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import unittest import paddle import numpy as np import random import paddle.distributed as dist import paddle.fluid as fluid import paddle.distributed.fleet as fleet from paddle import framework class TestCollectiveAllToAllSingle(unittest.TestCase): def setUp(self): assert not paddle.distributed.is_initialized(), \ "The distributed environment has not been initialized." dist.init_parallel_env() assert paddle.distributed.is_initialized(), \ "The distributed environment has been initialized." paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) def test_collective_alltoall_single(self): rank = dist.get_rank() size = dist.get_world_size() # case 1 input = paddle.ones([size, size], dtype='int64') * rank output = paddle.empty([size, size], dtype='int64') expected_output = paddle.concat( [paddle.ones([1, size], dtype='int64') * i for i in range(size)]) group = dist.new_group([0, 1]) dist.alltoall_single(input, output, group=group) np.testing.assert_allclose(output.numpy(), expected_output.numpy()) dist.destroy_process_group(group) # case 2 in_split_sizes = [i + 1 for i in range(size)] out_split_sizes = [rank + 1 for i in range(size)] input = paddle.ones([sum(in_split_sizes), size], dtype='float32') * rank output = paddle.empty([(rank + 1) * size, size], dtype='float32') expected_output = paddle.concat([ paddle.ones([rank + 1, size], dtype='float32') * i for i in range(size) ]) group = dist.new_group([0, 1]) task = dist.alltoall_single(input, output, in_split_sizes, out_split_sizes, sync_op=False, group=group) task.wait() np.testing.assert_allclose(output.numpy(), expected_output.numpy()) dist.destroy_process_group(group) def tearDown(self): dist.destroy_process_group() assert not paddle.distributed.is_initialized(), \ "The distributed environment has been deinitialized." if __name__ == '__main__': unittest.main()