# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is the lib for gradient checker unittest.""" from __future__ import print_function import unittest import six import collections import numpy as np from itertools import product import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.executor import Executor from paddle.fluid.backward import _append_grad_suffix_, _as_list def _product(t): if isinstance(t, int): return t else: return np.product(t) def dtype_to_np_dtype(dtype): if dtype == core.VarDesc.VarType.FP32: return np.float32 elif dtype == core.VarDesc.VarType.FP64: return np.float64 elif dtype == core.VarDesc.VarType.FP16: return np.float16 else: raise ValueError("Not supported data type " + str(dtype)) def _get_item(t, i, np_dtype): if np_dtype == np.float16: np_t = np.array(t).astype(np.float16) np_t = np_t.flatten() return np_t[i] elif np_dtype == np.float32: return t._get_float_element(i) elif np_dtype == np.float64: return t._get_double_element(i) else: raise ValueError("Not supported data type " + str(np_dtype)) def _set_item(t, i, e, np_dtype): if np_dtype == np.float16: np_t = np.array(t).astype(np.float16) shape = np_t.shape np_t = np_t.flatten() np_t[i] = e np_t = np_t.reshape(shape) t.set(np_t, place) elif np_dtype == np.float32: t._set_float_element(i, e) elif np_dtype == np.float64: t._set_double_element(i, e) else: raise ValueError("Not supported data type " + str(np_dtype)) def set_var_in_scope(scope, place, name, value, recursive_seq_len=None): t = scope.var(name).get_tensor() t.set(value, place) if recursive_seq_len: t.set_recursive_sequence_lengths(recursive_seq_len) return t def var_to_np_array_in_scope(scope, place, name): return np.array(scope.var(name).get_tensor()) def make_jacobian(x, y_size, np_dtype): if isinstance(x, fluid.framework.Variable): return np.zeros((_product(x.shape), y_size), dtype=np_dtype) elif isinstance(x, collections.Sequence): jacobians = list( filter(lambda t: t is not None, (make_jacobian( item, y_size, np_dtype) for item in x))) return jacobians else: None def _compute_numerical_jacobian(program, x, y, place, scope, delta): """Computes the numeric Jacobian for dy/dx. Computes the numeric Jacobian by slightly perturbing the inputs and measuring the differences on the output. Args: program (Program): the network program. x (Variable): the input variables. y (list[Variable]): the output variables. place (fluid.CPUPlace or fluid.CUDAPlace): the device. scope (Scope): the scope used to run program. delta: the amount of perturbation we give to the input Returns: A list of 2-D numpy array, the list length is len(y). Each 2-D numpy array represents the Jacobian for dy_i/dx. It has "x_size" rows and "y_size" columns where "x_size" is the number of elements in x and "y_size" is the number of elements in each y_i. """ if not isinstance(x, fluid.framework.Variable): raise TypeError('x is not Variable') # To compute the jacobian, treat x and y as one-dimensional vectors. y = _as_list(y) exe = fluid.Executor(place) def run(): y_res = exe.run(program, scope=scope, fetch_list=y) return [yi.flatten() for yi in y_res] x_name = x.name x_shape = x.shape x_size = _product(x_shape) x_t = scope.find_var(x_name).get_tensor() np_type = dtype_to_np_dtype(x.dtype) jacobian = [make_jacobian(x, _product(yi.shape), np_type) for yi in y] for i in six.moves.xrange(x_size): orig = _get_item(x_t, i, np_type) x_pos = orig + delta _set_item(x_t, i, x_pos, np_type) y_pos = run() x_neg = orig - delta _set_item(x_t, i, x_neg, np_type) y_neg = run() _set_item(x_t, i, orig, np_type) for j in six.moves.xrange(len(y)): jacobian[j][i, :] = (y_pos[j] - y_neg[j]) / delta / 2. return jacobian def _compute_analytical_jacobian(program, x, y, place, scope): """Computes the analytical Jacobian for dy/dx. Args: program (Program): a Program with forward pass. x (Variable|list[Variable]): a variable or list of variable y (Variable): the target variable. place (fluid.CPUPlace or fluid.CUDAPlace): the device. scope (Scope): the scope used to run program. Returns: A list of 2-D numpy array. The list length is len(x). Each 2-D numpy array represents the Jacobian for dy/dx_i. It has "xi_size" rows and "dy_size" columns where "x_size" is the number of elements in x_i and "dy_size" is the number of elements in y. """ if not isinstance(y, fluid.framework.Variable): raise TypeError('y is not Variable') dy_name = _append_grad_suffix_(y.name) np_type = dtype_to_np_dtype(y.dtype) # create dy Variable in Program dy = program.global_block().create_var( name=dy_name, shape=y.shape, dtype=np_type, persistable=True) # append backward dx = fluid.gradients(y, x, dy) # init dy tensor in scope value = np.zeros(y.shape, dtype=np_type) dy_t = set_var_in_scope(scope, place, dy_name, value) exe = fluid.Executor(place) y_size = _product(y.shape) x = _as_list(x) jacobian = make_jacobian(x, y_size, np_type) # filter None in dx for DX/DY may be None in kernel # only fetch not None dx in exe.run filted = [(i, dxi) for i, dxi in enumerate(dx) if dxi is not None] filted_idx, filted_dx = zip(*filted) for i in six.moves.xrange(y_size): _set_item(dy_t, i, 1, np_type) dx_res = exe.run(program, scope=scope, fetch_list=filted_dx) for j in six.moves.xrange(len(filted_dx)): dx_idx = filted_idx[j] if dx_res[j] is not None: jacobian[dx_idx][:, i] = dx_res[j].flatten() else: jacobian[dx_idx][:, i] = np.zeros( dx[dx_idx].shape, dtype=np_type).flatten() _set_item(dy_t, i, 0, np_type) return jacobian def grad_check(x, y, x_init=None, place=None, program=None, eps=1e-6, atol=1e-5, rtol=1e-3, raise_exception=True): """ Check numerical and analytical gradients for dy/dx. Each Jacobian gradients is a 2-D array with shape [xi_size, yi_size]. Args: x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. place (fluid.CPUPlace or fluid.CUDAPlace): the device. program (Program|None): a Program with forward pass. If None, use fluid.default_main_program(). eps (float): perturbation for finite differences. atol (float): absolute tolerance. rtol (float): relative tolerance. raise_exception (bool): whether to raise an exception if the check fails. Default is True. Returns: True if all differences satisfy numpy.allclose condition. """ def fail_test(msg): if raise_exception: raise RuntimeError(msg) return False # check input arguments x = _as_list(x) y = _as_list(y) for v in x: v.stop_gradient = False v.persistable = True if place is None: place = fluid.CPUPlace() if program is None: program = fluid.default_main_program() # init variable in strtup program scope = fluid.executor.global_scope() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x_init = _as_list(x_init) # init inputs if x_init is not None if x_init: if len(x_init) != len(x): raise ValueError('len(x_init) (=%d) is not the same' ' as len(x) (= %d)' % (len(x_init), len(x))) # init variable in main program for var, arr in zip(x, x_init): assert var.shape == arr.shape feeds = {k.name: v for k, v in zip(x, x_init)} exe.run(program, feed=feeds, scope=scope) # [x_idx, y_idx] numerical = [ _compute_numerical_jacobian(program, xi, y, place, scope, eps) for xi in x ] # [y_idx, x_idx] analytical = [] for yi in y: prog = program.clone() clone_x = [] clone_y = None for b in prog.blocks: if b.has_var(yi.name): clone_y = b.var(yi.name) break for xi in x: for b in prog.blocks: if b.has_var(xi.name): clone_x.append(b.var(xi.name)) break analytical.append( _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope)) for i, (x_idx, y_idx) in enumerate(product(* [range(len(x)), range(len(y))])): a = analytical[y_idx][x_idx] n = numerical[x_idx][y_idx] if not np.allclose(a, n, rtol, atol): msg = 'Jacobian mismatch for output %s ' \ 'with respect to input %s on %s,\n' \ 'numerical:%s\nanalytical:%s\n' \ % (y[y_idx].name, x[x_idx].name, str(place), n, a) return fail_test(msg) return True def double_grad_check(x, y, x_init=None, y_grads=None, place=None, program=None, eps=1e-6, atol=1e-5, rtol=1e-3, raise_exception=True): """ Check gradients of gradients. This function will append backward to the program before second order gradient check. Args: x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y. place (fluid.CPUPlace or fluid.CUDAPlace): the device. program (Program|None): a Program with forward pass. If None, use fluid.default_main_program(). eps (float): perturbation for finite differences. atol (float): absolute tolerance. rtol (float): relative tolerance. raise_exception (bool): whether to raise an exception if the check fails. Default is True. Returns: True if all differences satisfy numpy.allclose condition. """ # check input arguments x = _as_list(x) for v in x: v.stop_gradient = False v.persistable = True y = _as_list(y) if program is None: program = fluid.default_main_program() if y_grads is None: scope = fluid.executor.global_scope() y_grads = [] y_grads_init = [] for yi in y: dyi_name = _append_grad_suffix_(yi.name) np_type = dtype_to_np_dtype(yi.dtype) dy = program.global_block().create_var( name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True) dy.stop_gradient = False v = np.random.random(size=yi.shape).astype(np_type) set_var_in_scope(scope, place, dyi_name, v) y_grads.append(dy) y_grads_init.append(v) else: y_grads = _as_list(y_grads) y_grads_init = [ var_to_np_array_in_scope(scope, place, v.name) for v in y_grads ] # append first order grads target_grads = fluid.gradients(y, x, y_grads) # y_grads are the input of first-order backward, # so, they are also the input of second-order backward. x += y_grads x_init = _as_list(x_init) x_init += y_grads_init grad_check(x, target_grads, x_init, place, program, eps, atol, rtol)