// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/extension.h" #define CHECK_GPU_INPUT(x) PD_CHECK(x.is_gpu(), #x " must be a GPU Tensor.") template __global__ void relu_cuda_forward_kernel(const data_t* x, data_t* y, int64_t num) { int64_t gid = blockIdx.x * blockDim.x + threadIdx.x; for (int64_t i = gid; i < num; i += blockDim.x * gridDim.x) { y[i] = x[i] > static_cast(0.) ? x[i] : static_cast(0.); } } template __global__ void relu_cuda_backward_kernel(const data_t* dy, const data_t* y, data_t* dx, int64_t num) { int64_t gid = blockIdx.x * blockDim.x + threadIdx.x; for (int64_t i = gid; i < num; i += blockDim.x * gridDim.x) { dx[i] = dy[i] * (y[i] > static_cast(0.) ? static_cast(1.) : static_cast(0.)); } } template __global__ void relu_cuda_double_backward_kernel(const data_t* out_data, const data_t* ddx_data, data_t* ddout_data, int64_t num) { int64_t gid = blockIdx.x * blockDim.x + threadIdx.x; for (int64_t i = num; i < num; i += blockDim.x * gridDim.x) { ddout_data[i] = ddx_data[i] * (out_data[i] > static_cast(0.) ? static_cast(1.) : static_cast(0.)); } } std::vector relu_cuda_forward(const paddle::Tensor& x) { CHECK_GPU_INPUT(x); auto out = paddle::empty_like(x); int64_t numel = x.numel(); int64_t block = 512; int64_t grid = (numel + block - 1) / block; PD_DISPATCH_FLOATING_AND_HALF_TYPES( x.type(), "relu_cuda_forward_kernel", ([&] { relu_cuda_forward_kernel<<>>( x.data(), out.data(), numel); })); return {out}; } std::vector relu_cuda_backward(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out) { CHECK_GPU_INPUT(x); CHECK_GPU_INPUT(out); CHECK_GPU_INPUT(grad_out); auto grad_x = paddle::empty_like(x); int64_t numel = out.numel(); int64_t block = 512; int64_t grid = (numel + block - 1) / block; PD_DISPATCH_FLOATING_AND_HALF_TYPES( out.type(), "relu_cuda_backward_kernel", ([&] { relu_cuda_backward_kernel<<>>( grad_out.data(), out.data(), grad_x.mutable_data(x.place()), numel); })); return {grad_x}; } std::vector relu_cuda_double_backward( const paddle::Tensor& out, const paddle::Tensor& ddx) { CHECK_GPU_INPUT(out); CHECK_GPU_INPUT(ddx); auto ddout = paddle::empty(out.shape(), out.dtype(), out.place()); int64_t numel = out.numel(); int64_t block = 512; int64_t grid = (numel + block - 1) / block; PD_DISPATCH_FLOATING_AND_HALF_TYPES( out.type(), "relu_cuda_double_backward_kernel", ([&] { relu_cuda_double_backward_kernel< data_t><<>>( out.data(), ddx.data(), ddout.mutable_data(out.place()), numel); })); std::cout << "Debug info: run relu gpu double backward success." << std::endl; return {ddout}; } std::vector relu_cuda_backward_without_x( const paddle::Tensor& out, const paddle::Tensor& grad_out) { auto grad_x = paddle::empty(out.shape(), out.dtype(), out.place()); int numel = out.numel(); int block = 512; int grid = (numel + block - 1) / block; PD_DISPATCH_FLOATING_AND_HALF_TYPES( out.type(), "relu_cuda_backward_kernel", ([&] { relu_cuda_backward_kernel<<>>( grad_out.data(), out.data(), grad_x.mutable_data(out.place()), numel); })); return {grad_x}; } void relu_cuda_forward_out(const paddle::Tensor& x, paddle::Tensor* out) { int numel = x.numel(); int block = 512; int grid = (numel + block - 1) / block; out->reshape(x.shape()); PD_DISPATCH_FLOATING_AND_HALF_TYPES( x.type(), "relu_cuda_forward_kernel", ([&] { relu_cuda_forward_kernel<<>>( x.data(), out->mutable_data(x.place()), numel); })); } void relu_cuda_backward_out(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out, paddle::Tensor* grad_x) { int numel = out.numel(); int block = 512; int grid = (numel + block - 1) / block; grad_x->reshape(x.shape()); PD_DISPATCH_FLOATING_AND_HALF_TYPES( out.type(), "relu_cuda_backward_kernel", ([&] { relu_cuda_backward_kernel<<>>( grad_out.data(), out.data(), grad_x->mutable_data(x.place()), numel); })); }