# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import os import numpy as np import paddle import paddle.static as static import paddle.distributed.fleet as fleet import paddle.nn as nn import paddle.nn.functional as F paddle.enable_static() class RNNEncoder(nn.Layer): def __init__(self, input_size, hidden_size, num_layers=1, direction="forward", dropout=0.0, pooling_type=None, **kwargs): super().__init__() self._input_size = input_size self._hidden_size = hidden_size self._direction = direction self._pooling_type = pooling_type self.rnn_layer = nn.SimpleRNN( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, direction=direction, dropout=dropout, **kwargs) def get_input_dim(self): return self._input_size def get_output_dim(self): if self._direction == "bidirect": return self._hidden_size * 2 else: return self._hidden_size def forward(self, inputs, sequence_length): encoded_text, last_hidden = self.rnn_layer( inputs, sequence_length=sequence_length) output = paddle.max(encoded_text, axis=1) return output class RNNModel(nn.Layer): def __init__(self, vocab_size, num_classes, emb_dim=128, padding_idx=0, rnn_hidden_size=198, direction='forward', rnn_layers=1, dropout_rate=0.0, pooling_type=None, fc_hidden_size=96): super().__init__() self.embedder = nn.Embedding( num_embeddings=vocab_size, embedding_dim=emb_dim, padding_idx=padding_idx) self.rnn_encoder = RNNEncoder( emb_dim, rnn_hidden_size, num_layers=rnn_layers, direction=direction, dropout=dropout_rate, pooling_type=pooling_type) self.fc = nn.Linear(self.rnn_encoder.get_output_dim(), fc_hidden_size) self.output_layer = nn.Linear(fc_hidden_size, num_classes) def forward(self, text, seq_len): embedded_text = self.embedder(text) text_repr = self.rnn_encoder(embedded_text, sequence_length=seq_len) fc_out = paddle.tanh(self.fc(text_repr)) logits = self.output_layer(fc_out) return logits def rnn_pretrain_forward(train_program, start_program, topo=None): with static.program_guard(train_program, start_program), paddle.utils.unique_name.guard(): batch_size = 1 tokens = static.data( name="tokens", shape=[batch_size, -1], dtype="int64") seq_len = static.data(name="ids", shape=[batch_size], dtype="int64") labels = static.data(name="labels", shape=[batch_size], dtype="int64") data_holders = [tokens, seq_len, labels] vocab_size = 10 num_classes = 2 pad_token_id = 0 model = RNNModel( vocab_size, num_classes, direction='forward', padding_idx=pad_token_id, pooling_type='max') optimizer = paddle.optimizer.Adam( parameters=model.parameters(), learning_rate=0.001) criterion = paddle.nn.CrossEntropyLoss() preds = model(tokens, seq_len) loss = criterion(preds, labels) return train_program, start_program, loss, optimizer, data_holders class TestFleetMetaOptimizer(unittest.TestCase): def setUp(self): os.environ["PADDLE_TRAINER_ID"] = "1" os.environ[ "PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.1:36002" def test_rnn_raw_optimizer(self): import paddle.distributed.fleet as fleet import paddle.distributed.fleet.base.role_maker as role_maker role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) train_program = static.Program() start_program = static.Program() train_program, start_program, loss, optimizer, data_holders = \ rnn_pretrain_forward(train_program, start_program) with paddle.static.program_guard( train_program, start_program), paddle.utils.unique_name.guard(): strategy = fleet.DistributedStrategy() strategy.without_graph_optimization = True strategy.fuse_all_reduce_ops = True fleet.init(is_collective=True, strategy=strategy) optimizer = fleet.distributed_optimizer(optimizer) optimizer.minimize(loss) if __name__ == "__main__": unittest.main()