/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "paddle/operators/unpool_op.h" namespace paddle { namespace operators { class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker { public: Unpool2dOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor of unpool operator. " "The format of input tensor is NCHW. Where N is batch size, C is the " "number of channels, H and W is the height and width of feature."); AddInput("Y", "(Tensor) The input tensor of the indices given out by MaxPool2d. " "The format of input tensor is NCHW. Where N is batch size, C is the " "number of channels, H and W is the height and width of feature."); AddOutput("Out", "(Tensor) The output tensor of unpool operator." "The format of output tensor is also NCHW." "Where N is batch size, C is " "the number of channels, H and W is the height and " "width of feature."); AddAttr>("ksize", "(vector), the unpooling window size(height, width) " "of unpooling operator."); AddAttr>("strides", "(vector, default:{1, 1}), " "strides (height, width) of unpooling operator.") .SetDefault({1, 1}); AddAttr>("paddings", "(vector defalut:{0,0}), " "paddings (height, width) of unpooling operator.") .SetDefault({0, 0}); AddAttr("unpoolingtype", "(string), unpooling type, can be \"max\" for max-unpooling ") .InEnum({"max"}); AddComment(R"DOC( "input: the input Tensor to invert indices: the indices given out by MaxPool2d ksize – Size of the max pooling window. stride – Stride of the max pooling window. "It is set to kernel_size by default. padding – Padding that was added to the input" )DOC"); } }; int OutputSize(int input_size, int ksize, int padding, int stride) { int output_size = (input_size -1) * stride - 2 * padding + ksize; return output_size; } class UnpoolOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp" "should not be null."); PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of UnpoolOp" "should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of UnpoolOp should not be null."); auto in_x_dims = ctx->GetInputDim("X"); auto in_y_dims = ctx->GetInputDim("Y"); std::string unpooling_type = ctx->Attrs().Get("unpoolingtype"); std::vector ksize = ctx->Attrs().Get>("ksize"); std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); PADDLE_ENFORCE(in_x_dims.size() == 4, "Unpooling intput must be of 4-dimensional."); for (int i = 0; i < 4; ++i) { PADDLE_ENFORCE(in_x_dims[i] == in_y_dims[i], "X size must be eq Y size!"); } std::vector output_shape({in_x_dims[0], in_x_dims[1]}); for (size_t i = 0; i < ksize.size(); ++i) { output_shape.push_back( OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i])); } ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); } }; class UnpoolOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "Input(X@GRAD) should not be null."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad, ops::UnpoolOpGrad); REGISTER_OP_CPU_KERNEL(unpool, ops::UnpoolKernel, ops::UnpoolKernel); REGISTER_OP_CPU_KERNEL(unpool_grad, ops::UnpoolGradKernel, ops::UnpoolGradKernel);