# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import six from op_test import OpTest import paddle.fluid as fluid from paddle.fluid import Program, program_guard class SeluTest(OpTest): def setUp(self): self.op_type = "selu" self.x_shape = [3, 5, 5, 10] self.dtype = np.float64 self.init_x_shape() self.init_dtype() alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 x = np.random.normal(size=self.x_shape).astype(self.dtype) # Since zero point in selu is not differentiable, avoid randomize # zero. x[np.abs(x) < 0.005] = 0.02 x_flat = x.flatten() for i in range(x_flat.size): if x_flat[i] < 0: x_flat[i] = alpha * np.exp(x_flat[i]) - alpha x_flat[i] = scale * x_flat[i] out_np = x_flat.reshape(self.x_shape) self.inputs = {'X': x} self.outputs = {'Out': out_np} self.attrs = { 'alpha': alpha, 'scale': scale, } def init_x_shape(self): pass def init_dtype(self): pass def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSeluOpError(unittest.TestCase): def test_errors(self): with program_guard(Program()): # The input type must be Variable. self.assertRaises(TypeError, fluid.layers.selu, 1) # The input dtype must be float16, float32, float64. x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32') self.assertRaises(TypeError, fluid.layers.selu, x_int32) # support the input dtype is float32 x_fp32 = fluid.data(name='x_fp32', shape=[12, 10], dtype='float32') fluid.layers.selu(x_fp32) if __name__ == "__main__": unittest.main()