// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/deformable_conv_v1_op.h" #include #include "paddle/fluid/operators/conv_op.h" namespace paddle { namespace operators { class DeformableConvV1OpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("Input", "(Tensor) The input of deformable conv op. " "The shape of input is " "[N, channel_in, H, W]"); AddInput("Offset", "(Tensor) The input offset. " "The shape of the offset is " "[N, deformable_groups * kernel_w * kernel_h * 2, H, W"); AddInput("Filter", "(Tensor) The Input Filter " "The shape of the wight is " "[num_filters, channel_in, kernel_h, kernel_w."); AddOutput("Output", "(Tensor) The output. " "The shape of the output tensor is " "[N, num_filters, out_height, out_width]]."); AddAttr>("strides", "(vector default:{1, 1}), the " "strides(h_stride, w_stride) of " "convolution operator.") .SetDefault({1, 1}); AddAttr>("paddings", "(vector default:{0,0}), the " "paddings(h_pad, w_pad) of " "convolution operator. ") .SetDefault({0, 0}); AddAttr>("dilations", "(vector default:{1, 1}), the " "dilations(h_dilation, w_dilation) of " "convolution operator.") .SetDefault({1, 1}); AddAttr( "groups", "(int default:1), the groups number of the convolution operator. " "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: " "when group=2, the first half of the filters is only connected to the " "first half of the input channels, while the second half of the " "filters " "is only connected to the second half of the input channels.") .SetDefault(1); AddAttr("deformable_groups", "(int default:1), the number of the deformable groups.") .SetDefault(1); AddAttr("im2col_step", "im2col maximum number of image per computation") .SetDefault(64); AddComment(R"DOC( **Deformable Convolution v1 Operator** Deformable Convolution is a new method based Convolution which feature has offset in spatial location. 1. Get offset of each pixel in feature map with convolution layers which number of channels should be double of weight size. 2. Add offset to pixel to get new location and the new value which are computed directly through bilinear interpolation with four nearest pixel. 3. Get the product of pixel and weight as result Compute 2-D deformable convolution on 4-D input. Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: $$ y(p) = \\sum_{k=1}^{K}{w_k * x(p + p_k + \\Delta p_k)} $$ Where $$\\Delta p_k$$ is the learnable offset for the k-th location, respectively. Refer to 'https://arxiv.org/abs/1703.06211 ' Example: Input: Input shape: $(N, C_{in}, H_{in}, W_{in})$ Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ Offset shape: $(N, 2 * deformable_groups, * H_f * W_f, H_{out}, W_{out})$ Output: Output shape: $(N, C_{out}, H_{out}, W_{out})$ where $H_{out}, W_{out}$ must be equal to $H_{in}, W_{in}$ respectively. Where $$ H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\ W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1 $$ )DOC"); } }; class DeformableConvV1Op : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true, "Input(Input) of DeformableConvOp " "should not be null"); PADDLE_ENFORCE_EQ(ctx->HasInput("Offset"), true, "Input(Offset) of DeformableConvOp " "should not be null"); PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true, "Input(Filter) of DeformableConvOp " "should not be null"); PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true, "Output(Output) of DeformableConvOp " "should not be null."); auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); auto offset_dims = ctx->GetInputDim("Offset"); std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); std::vector dilations = ctx->Attrs().Get>("dilations"); int groups = ctx->Attrs().Get("groups"); int deformable_groups = ctx->Attrs().Get("deformable_groups"); int im2col_step = ctx->Attrs().Get("im2col_step"); PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv input should be 4-D tensor, get %u", in_dims.size()); PADDLE_ENFORCE_EQ( in_dims.size(), filter_dims.size(), "Conv input dimension and filter dimension should be the same."); PADDLE_ENFORCE_EQ( in_dims.size() - strides.size(), 2U, "Conv input dimension and strides dimension should be consistent."); PADDLE_ENFORCE_EQ(paddings.size(), strides.size(), "Conv paddings dimension and Conv strides dimension " "should be the same."); PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups, "The number of input channels should be equal to filter " "channels * groups."); PADDLE_ENFORCE_EQ( filter_dims[0] % groups, 0, "The number of output channels should be divided by groups."); PADDLE_ENFORCE_EQ(filter_dims[0] % deformable_groups, 0, "The number of output channels should be " "divided by deformable groups."); if (in_dims[0] > im2col_step) { PADDLE_ENFORCE_EQ( in_dims[0] % im2col_step, 0U, "Input batchsize must be smaller than or divide im2col_step"); } for (size_t i = 0; i < strides.size(); ++i) { PADDLE_ENFORCE_GT(strides[i], 0U, "stride %d size incorrect", i); } for (size_t i = 0; i < dilations.size(); ++i) { PADDLE_ENFORCE_GT(dilations[i], 0U, "dilation %d size incorrect", i); } std::vector output_shape({in_dims[0], filter_dims[0]}); for (size_t i = 0; i < strides.size(); ++i) { output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i], paddings[i], strides[i])); } PADDLE_ENFORCE_EQ(output_shape[1] % deformable_groups, 0U, "output num_filter must divide deformable group size."); PADDLE_ENFORCE_EQ(output_shape[2], offset_dims[2], "output height must equal to offset map height."); PADDLE_ENFORCE_EQ(output_shape[3], offset_dims[3], "output width must equal to offset map width."); PADDLE_ENFORCE_EQ(offset_dims[1] % (filter_dims[2] * filter_dims[3]), 0U, "offset filter must divide deformable group size."); PADDLE_ENFORCE_EQ(offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]), deformable_groups, "offset filter must divide deformable group size."); ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.device_context()); } }; class DeformableConvV1GradOpDescMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: std::unique_ptr Apply() const override { std::unique_ptr op(new framework::OpDesc()); op->SetType("deformable_conv_v1_grad"); op->SetInput("Input", Input("Input")); op->SetInput("Filter", Input("Filter")); op->SetInput("Offset", Input("Offset")); op->SetInput(framework::GradVarName("Output"), OutputGrad("Output")); op->SetOutput(framework::GradVarName("Input"), InputGrad("Input")); op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter")); op->SetOutput(framework::GradVarName("Offset"), InputGrad("Offset")); op->SetAttrMap(Attrs()); return op; } }; class DeformableConvV1GradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); auto offset_dims = ctx->GetInputDim("Offset"); PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Output")), true, "the gradient of output(Out) must not be null"); if (ctx->HasOutput(framework::GradVarName("Input"))) { ctx->SetOutputDim(framework::GradVarName("Input"), in_dims); } if (ctx->HasOutput(framework::GradVarName("Filter"))) { ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims); } if (ctx->HasOutput(framework::GradVarName("Offset"))) { ctx->SetOutputDim(framework::GradVarName("Offset"), offset_dims); } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.device_context()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(deformable_conv_v1, ops::DeformableConvV1Op, ops::DeformableConvV1OpMaker, ops::DeformableConvV1GradOpDescMaker); REGISTER_OPERATOR(deformable_conv_v1_grad, ops::DeformableConvV1GradOp); REGISTER_OP_CPU_KERNEL(deformable_conv_v1, ops::DeformableConvV1CPUKernel); REGISTER_OP_CPU_KERNEL(deformable_conv_v1_grad, ops::DeformableConvV1GradCPUKernel);