// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/prepared_operator.h" #include "paddle/fluid/framework/data_type_transform.h" #include "paddle/fluid/framework/details/nan_inf_utils.h" #include "paddle/fluid/imperative/infer_shape_context.h" #include "paddle/fluid/imperative/tracer.h" #include "paddle/pten/common/scalar.h" #include "paddle/pten/common/scalar_array.h" #include "paddle/utils/small_vector.h" #ifdef PADDLE_WITH_XPU #include "paddle/fluid/platform/device/xpu/xpu_op_list.h" #endif #include "paddle/fluid/platform/device/gpu/gpu_info.h" DECLARE_bool(check_nan_inf); DECLARE_bool(run_pten_kernel); DECLARE_bool(benchmark); namespace paddle { namespace imperative { const std::shared_ptr& GetVariableWrapper( const std::shared_ptr& var) { return var->SharedVar(); } const std::shared_ptr& GetVariableWrapper( const std::shared_ptr& var) { return var; } const framework::Tensor* GetTensorFromVar(const framework::Variable& var) { if (var.IsType()) { return &(var.Get()); } else if (var.IsType()) { return &(var.Get().value()); } else { return nullptr; } } static const framework::Attribute& GetAttr( const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const std::string& name) { auto it = attrs.find(name); bool found = it != attrs.end(); if (!found) { it = default_attrs.find(name); found = it != default_attrs.end(); } PADDLE_ENFORCE_EQ( found, true, platform::errors::NotFound("(%s) is not found in AttributeMap.", name)); return it->second; } template static void HandleComplexGradToRealGrad(const NameVarMap& outs) { for (auto& pair : outs) { for (auto& var : pair.second) { if (var == nullptr) { continue; } if (var->ForwardDataType() == static_cast(-1)) { VLOG(6) << "Var (" << var->Name() << ")'s forward data type is not set."; continue; } if (!framework::IsComplexType(var->DataType()) || framework::IsComplexType(var->ForwardDataType())) { continue; } const auto* tensor = GetTensorFromVar(var->Var()); if (tensor && tensor->IsInitialized()) { VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType()) << " var `" << var->Name() << "` to " << framework::DataTypeToString(var->ForwardDataType()) << " real var in dynamic graph."; framework::Tensor out; framework::TransComplexToReal(var->ForwardDataType(), var->DataType(), *tensor, &out); SetTensorToVariable(var->Var(), out, var->MutableVar()); } } } } PreparedOp::PreparedOp(const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OpKernelType& kernel_type, const framework::OperatorWithKernel::OpKernelFunc& func, platform::DeviceContext* dev_ctx) : op_(op), ctx_(ctx), kernel_type_(kernel_type), func_(func), dev_ctx_(dev_ctx) {} PreparedOp::PreparedOp(const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OpKernelType& kernel_type, const framework::KernelSignature& kernel_signature, const pten::Kernel& pt_kernel, pten::KernelContext* pt_kernel_context, platform::DeviceContext* dev_ctx) : op_(op), ctx_(ctx), kernel_type_(kernel_type), func_(nullptr), dev_ctx_(dev_ctx), run_pten_kernel_(true), pt_kernel_signature_(kernel_signature), pt_kernel_(pt_kernel), pt_kernel_context_(pt_kernel_context) {} template PreparedOp PrepareImpl(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, pten::KernelContext* pt_kernel_context) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place); framework::RuntimeContext ctx({}, {}); #ifdef PADDLE_WITH_MKLDNN // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and // GetKernelType functions, so we need to copy the attributes there. // Const qualifier of Attrs had to be discarded to overwrite it. if (FLAGS_use_mkldnn) { auto& mutable_op_attrs = const_cast(op.Attrs()); mutable_op_attrs = default_attrs; for (auto& attr : attrs) { mutable_op_attrs[attr.first] = attr.second; } } #endif // 1. get expected kernel key auto dygraph_exe_ctx = DygraphExecutionContext( op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs); auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx); VLOG(3) << "expected_kernel_key:" << expected_kernel_key; if (FLAGS_run_pten_kernel && pten::KernelFactory::Instance().HasCompatiblePtenKernel(op.Type())) { auto pt_kernel_signature = op.GetExpectedPtenKernelArgs(dygraph_exe_ctx); VLOG(6) << framework::KernelSignatureToString(pt_kernel_signature); auto pt_kernel_name = pten::KernelName(pt_kernel_signature.name); auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(expected_kernel_key); auto pt_kernel = pten::KernelFactory::Instance().SelectKernel( pt_kernel_name, pt_kernel_key); if (pt_kernel.IsValid()) { VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name << " | kernel key: " << pt_kernel_key << " | kernel: " << pt_kernel; // TODO(chenweihang): using CPUKernel when miss device kernel case return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature, pt_kernel, pt_kernel_context, dev_ctx); } else { VLOG(6) << "Dynamic mode ChoosePtenKernel - kernel `" << pt_kernel_name << "` not found."; } } // 2. check if op[type] has kernel registered. auto& all_op_kernels = op.AllOpKernels(); auto kernels_iter = all_op_kernels.find(op.Type()); PADDLE_ENFORCE_NE( kernels_iter, all_op_kernels.end(), platform::errors::NotFound( "There are no kernels which are registered in the %s operator.", op.Type())); auto& kernels = kernels_iter->second; auto kernel_iter = kernels.find(expected_kernel_key); #ifdef PADDLE_WITH_XPU if (is_xpu_place(expected_kernel_key.place_) && (kernel_iter == kernels.end() || !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) || paddle::platform::is_in_xpu_black_list(op.Type()))) { VLOG(3) << "missing XPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif #ifdef PADDLE_WITH_ASCEND_CL if (kernel_iter == kernels.end() && is_npu_place(expected_kernel_key.place_)) { VLOG(3) << "missing NPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif // TODO(jiabin): Add operator.cc's line 1000 part back when we need that // case PADDLE_ENFORCE_NE(kernel_iter, kernels.end(), platform::errors::NotFound( "Operator %s does not have kernel for %s.", op.Type(), KernelTypeToString(expected_kernel_key))); if (!(expected_kernel_key.place_ == place)) { dev_ctx = pool.Get(expected_kernel_key.place_); } return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx); } PreparedOp PreparedOp::Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, pten::KernelContext* pt_kernel_context) { return PrepareImpl(ins, outs, op, place, attrs, default_attrs, pt_kernel_context); } PreparedOp PreparedOp::Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, pten::KernelContext* pt_kernel_context) { return PrepareImpl(ins, outs, op, place, attrs, default_attrs, pt_kernel_context); } template static void BuildDygraphPtenKernelContext( const framework::KernelSignature& pt_kernel_signature, const pten::Kernel& pt_kernel, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) { // TODO(chenweihang): now only work for very simple case, // many cases need to be deal with later: // 1. the input and output are not tensor // 2. the dispensbale, duplicable input and output // 3. needless attributes remove // 4. use pt Tensor directly // 5. kernel input is not DenseTensor kernel_ctx->SetDeviceContext(dev_ctx); auto& input_names = std::get<0>(pt_kernel_signature.args); auto& attr_names = std::get<1>(pt_kernel_signature.args); auto& output_names = std::get<2>(pt_kernel_signature.args); auto& input_defs = pt_kernel.args_def().input_defs(); auto& output_defs = pt_kernel.args_def().output_defs(); auto& attr_defs = pt_kernel.args_def().attribute_defs(); PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(), platform::errors::InvalidArgument( "the size of inputs_args names (%d) must be equal to " "the size of kernel input_defs (%d).", input_names.size(), input_defs.size())); PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(), platform::errors::InvalidArgument( "the size of outputs_args names (%d) must be equal to " "the size of kernel output_defs (%d).", output_names.size(), output_defs.size())); PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(), platform::errors::InvalidArgument( "the size of attribute_args names (%d) must be equal " "to the size of kernel attribute_defs (%d).", attr_names.size(), attr_defs.size())); for (size_t i = 0; i < input_names.size(); ++i) { auto& in_def = input_defs.at(i); auto& ins_vector = ins.at(input_names[i]); size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second); size_t end_idx = start_idx + ins_vector.size(); auto current_vector_size = kernel_ctx->InputsSize(); // If the memory needed is less than the current memory allocated, we will // reuse the current memory by using ReMakePtenDenseTensorFromVar. // Otherwise,we will create new storage. for (size_t offset = 0; offset < ins_vector.size(); ++offset) { const auto& variable = ins_vector[offset]->Var(); if (current_vector_size > start_idx + offset) { auto& input_ptr = kernel_ctx->MutableInputPtrAt(start_idx + offset); if (input_ptr == nullptr) { input_ptr = experimental::MakePtenTensorBaseFromVar(variable, in_def); } else { experimental::ReMakePtenDenseTensorFromVar( variable, in_def, kernel_ctx->MutableInputAt( start_idx + offset)); } } else { kernel_ctx->EmplaceBackInputWithoutSetRange( experimental::MakePtenTensorBaseFromVar(variable, in_def)); } } kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i); } for (size_t i = 0; i < output_names.size(); ++i) { auto& out_def = output_defs.at(i); auto& outs_vector = outs.at(output_names[i]); size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second); size_t end_idx = start_idx + outs_vector.size(); auto current_vector_size = kernel_ctx->OutputsSize(); // If the memory needed is less than the current memory allocated, we will // reuse the current memory by using ReMakePtenDenseTensorFromVar. // Otherwise,we will create new storage. for (size_t offset = 0; offset < outs_vector.size(); ++offset) { if (current_vector_size > start_idx + offset) { experimental::ReMakePtenDenseTensorFromVar( outs_vector[offset]->MutableVar(), out_def, kernel_ctx->MutableOutputAt(start_idx + offset)); } else { kernel_ctx->EmplaceBackOutputWithoutSetRange( experimental::MakePtenTensorBaseFromVar( outs_vector[offset]->MutableVar(), out_def)); } } kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i); } for (size_t i = 0; i < attr_names.size(); ++i) { if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) { if (attrs.find(attr_names[i]) != attrs.end()) { // shape is in the attribute auto& attr = GetAttr(attrs, default_attrs, attr_names[i]); if (std::type_index(attr.type()) == std::type_index(typeid(std::vector))) { kernel_ctx->EmplaceBackAttr(std::move( pten::ScalarArray(BOOST_GET_CONST(std::vector, attr)))); } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported cast op attribute `%s` to VectorTensor when " "construct KernelContext.", attr_names[i])); } } else { // shape is in the input auto& ins_vector = ins.at(attr_names[i]); if (ins_vector.size() == 1) { // ShapeTensor kernel_ctx->EmplaceBackAttr(std::move( experimental::MakePtenScalarArrayFromVar(ins_vector[0]->Var()))); } else { // ShapeTensorList std::vector variables; variables.reserve(ins_vector.size()); for (const auto& var_base : ins_vector) { variables.push_back(var_base->MutableVar()); } kernel_ctx->EmplaceBackAttr(std::move( experimental::MakePtenScalarArrayFromVarList(variables))); } } } else if (attr_defs[i].type_index == std::type_index(typeid(pten::Scalar))) { // TODO(chenweihang): support other attrs later // TODO(zhangyunfei): Scalar should hold scaler type, and we should check // attribtue type by attr_defs if (attrs.find(attr_names[i]) != attrs.end() || default_attrs.find(attr_names[i]) != default_attrs.end()) { // scalar is in the attribute auto& attr = GetAttr(attrs, default_attrs, attr_names[i]); if (std::type_index(attr.type()) == std::type_index(typeid(float))) { kernel_ctx->EmplaceBackAttr( std::move(pten::Scalar(BOOST_GET_CONST(float, attr)))); } else if (std::type_index(attr.type()) == std::type_index(typeid(std::string))) { kernel_ctx->EmplaceBackAttr( std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr)))); } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported cast op attribute `%s` to Scalar when construct " "KernelContext in dygraph.", attr_names[i])); } } else { // scalar is in the input auto& ins_vector = ins.at(attr_names[i]); kernel_ctx->EmplaceBackAttr(std::move( experimental::MakePtenScalarFromVar(ins_vector[0]->Var()))); } } else { // TODO(chenweihang): support other attrs later auto& attr = GetAttr(attrs, default_attrs, attr_names[i]); if (attr_defs[i].type_index == std::type_index(typeid(int))) { kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr)); } else if (attr_defs[i].type_index == std::type_index(typeid(float))) { kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr)); } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) { kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr)); } else if (attr_defs[i].type_index == std::type_index(typeid(pten::DataType))) { auto data_type = pten::TransToPtenDataType( static_cast( BOOST_GET_CONST(int, attr))); kernel_ctx->EmplaceBackAttr(data_type); } else if (attr_defs[i].type_index == std::type_index(typeid(std::vector))) { if (std::type_index(attr.type()) == std::type_index(typeid(std::vector))) { // Emplace Back Attr according to the type of Pten_Kernel args. const auto& vector_int_attr = BOOST_GET_CONST(std::vector, attr); const std::vector vector_int64_attr(vector_int_attr.begin(), vector_int_attr.end()); kernel_ctx->EmplaceBackAttr(vector_int64_attr); } // TODO(YuanRisheng) Need support vector attr } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported cast op attribute `%s` when construct " "KernelContext in dygraph.", attr_names[i])); } } } } template static void WriteBackToOutputs( const framework::KernelSignature& pt_kernel_signature, const NameVarMap& outs, pten::KernelContext* kernel_ctx) { auto& output_names = std::get<2>(pt_kernel_signature.args); for (size_t i = 0; i < output_names.size(); ++i) { auto& outs_vector = outs.at(output_names[i]); auto& range_pair = kernel_ctx->OutputRangeAt(i); auto pten_outs = kernel_ctx->MutableOutputBetween( range_pair.first, range_pair.second); for (size_t j = 0; j < pten_outs.size(); ++j) { experimental::MakeVariableFromPtenTensor(pten_outs[j], outs_vector[j]->MutableVar()); } } } template static void PreparedOpRunImpl( const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OpKernelType& kernel_type, const framework::OperatorWithKernel::OpKernelFunc& func, platform::DeviceContext* dev_ctx, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { // TODO(zjl): remove scope in dygraph framework::Scope scope; DygraphInferShapeContext infer_shape_ctx(&ins, &outs, &attrs, &default_attrs, op.Type()); static_cast(op).InferShape( &infer_shape_ctx); func(DygraphExecutionContext(op, scope, *dev_ctx, ctx, ins, outs, attrs, default_attrs)); if (FLAGS_check_nan_inf) { framework::details::CheckOpHasNanOrInfInDygraph( op.Type(), outs, dev_ctx->GetPlace()); } if (FLAGS_benchmark) { dev_ctx->Wait(); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError()); VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error"; #endif } /** * [ Why need handle complex gradient to real gradient? ] * * After the introduction of complex number calculations, Ops that support * complex number calculations generally support type promotion, such as * x(float32) + y(complex64) = out(complex64), then the type of the grad * tensor should be dout(complex64), dx(float32), dy (complex64). * * But because the dout is complex64, the dx is also complex64 after * grad op kernel executed, we need to recognize this situation and * convert dx to float32 type. HandleComplexGradToRealGrad does this thing. */ if (framework::IsComplexType(kernel_type.data_type_)) { HandleComplexGradToRealGrad(outs); } } template static void PreparedOpRunPtImpl( const framework::OperatorBase& op, const framework::KernelSignature& pt_kernel_signature, const pten::Kernel& pt_kernel, pten::KernelContext* pt_kernel_context, platform::DeviceContext* dev_ctx, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { DygraphInferShapeContext infer_shape_ctx(&ins, &outs, &attrs, &default_attrs, op.Type()); static_cast(op).InferShape( &infer_shape_ctx); BuildDygraphPtenKernelContext(pt_kernel_signature, pt_kernel, ins, outs, attrs, default_attrs, dev_ctx, pt_kernel_context); pt_kernel(pt_kernel_context); if (FLAGS_benchmark) { dev_ctx->Wait(); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError()); VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error"; #endif } WriteBackToOutputs(pt_kernel_signature, outs, pt_kernel_context); // Ensure that it does not affect the VarBase life cycle management pt_kernel_context->ClearData(); // TODO(chenweihang): add debug flags later // TODO(chenweihang): deal with complex cases later } void PreparedOp::Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { if (run_pten_kernel_) { PreparedOpRunPtImpl(op_, pt_kernel_signature_, pt_kernel_, pt_kernel_context_, dev_ctx_, ins, outs, attrs, default_attrs); } else { PreparedOpRunImpl(op_, ctx_, kernel_type_, func_, dev_ctx_, ins, outs, attrs, default_attrs); } } void PreparedOp::Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { if (run_pten_kernel_) { PreparedOpRunPtImpl(op_, pt_kernel_signature_, pt_kernel_, pt_kernel_context_, dev_ctx_, ins, outs, attrs, default_attrs); } else { PreparedOpRunImpl(op_, ctx_, kernel_type_, func_, dev_ctx_, ins, outs, attrs, default_attrs); } } } // namespace imperative } // namespace paddle