# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import contextlib import unittest import paddle from paddle.fluid import core from paddle.fluid.dygraph.amp.auto_cast import _is_gpu_bfloat16_supported import os os.environ['FLAGS_new_einsum'] = "1" def error_trans(func, *args, **kargs): """ transport C++ exception into Python exception. because einsum_v2 raise different exception with einsum_v1. """ try: out = func(*args, **kargs) except ValueError as e: if "Same label have different shapes" in str(e): raise AssertionError("Invalid operands: label i " "corresponds to non-broadcastable dimensions.") class TestErrors(unittest.TestCase): def setUp(self): pass def test_diagonalize_errors(self): a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float') a = paddle.to_tensor(a) with self.assertRaisesRegex(AssertionError, ('Duplicate labels are not supported.')): paddle.einsum('...ii->...i', a) with self.assertRaisesRegex(AssertionError, ('Duplicate labels are not supported.')): paddle.einsum('i...i', a) with self.assertRaisesRegex(AssertionError, ('Duplicate labels are not supported.')): paddle.einsum('i...i->i...', a) def test_param_errors(self): a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float') a = paddle.to_tensor(a) with self.assertRaisesRegex( AssertionError, ("Required at least one operand in Einsum API, but received 0 ")): paddle.einsum('ijk') with self.assertRaisesRegex( AssertionError, ('Invalid equation: multiple `->` were found.')): paddle.einsum('i -> j -> k', a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: the number of operands is 2, " "but found 3 segments in the label equation.")): paddle.einsum('i,j,k', a, a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: the number of operands is 2, " "but found 1 segments in the label equation.")): paddle.einsum('ij -> k', a, a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: the number of operands is 1, " "but found 2 segments in the label equation.")): paddle.einsum('i, -> k', a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: the label string '' misses dimensions.")): paddle.einsum('->', a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: the label string 'i' misses dimensions.")): paddle.einsum('i', a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: _ is not a valid label, " "which should be letters.")): paddle.einsum('i_', a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: `.` is found outside of an ellipsis.")): paddle.einsum('i..j', a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: `.` is found outside of an ellipsis.")): paddle.einsum('...k...', a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: missing ellipsis in output labels.")): paddle.einsum('i...->i', a) with self.assertRaisesRegex( AssertionError, ("Invalid equation: duplicate output labels are found.")): paddle.einsum('i...->i...i', a) with self.assertRaisesRegex( AssertionError, ("Invalid operands: label i " "corresponds to non-broadcastable dimensions.")): error_trans(paddle.einsum, 'ij...,ji...', a, a) class TestEinsum(unittest.TestCase): @classmethod def setUpClass(cls): np.random.seed(12345) cls.TEST_SAMPLES = { "a": np.random.rand(1, 1), "b": np.random.rand(1), "x": np.random.rand(5), "y": np.random.rand(7), "A": np.random.rand(4, 5), "B": np.random.rand(2, 5), "C": np.random.rand(3, 7), "D": np.random.rand(3, 4, 5), "E": np.random.rand(3, 5, 2), "F": np.random.rand(2, 4, 5, 3), "G": np.random.rand(4, 2, 5), "H": np.random.rand(3, 2, 4), "I": np.random.rand(2, 2), "J": np.random.rand(1, 3, 5), "K": np.random.rand(1, 2, 3, 4), } def _get_place(self, force_to_use_cpu=False): if force_to_use_cpu: return core.CPUPlace() else: if core.is_compiled_with_cuda(): return core.CUDAPlace(0) return core.CPUPlace() def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8): error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}' self.assertTrue( np.allclose(actual, expect, rtol=rtol, atol=atol), error_msg.format(paddle.get_device(), expect, actual, self.__class__.__name__)) def setUp(self): self.sample = {"paradigm": "i->", "data": ["x"]} def test_forward(self): operands = [ TestEinsum.TEST_SAMPLES[operand] for operand in self.sample["data"] ] expected_result = np.einsum(self.sample["paradigm"], *operands) equation = self.sample["paradigm"] with paddle.fluid.dygraph.guard( self._get_place(force_to_use_cpu=False)): pd_operands = [paddle.to_tensor(operand) for operand in operands] result = paddle.einsum(equation, *pd_operands) self.check_output_equal(result.numpy(), expected_result) with paddle.fluid.dygraph.guard(self._get_place(force_to_use_cpu=True)): pd_operands = [paddle.to_tensor(operand) for operand in operands] result = paddle.einsum(equation, *pd_operands) self.check_output_equal(result.numpy(), expected_result) class TestEinsumVectorDot(TestEinsum): def setUp(self): self.sample = {"paradigm": "i,i->", "data": ["x", "x"]} class TestEinsumVectorMul(TestEinsum): def setUp(self): self.sample = {"paradigm": "i,i->i", "data": ["x", "x"]} class TestEinsumVectorOuter(TestEinsum): def setUp(self): self.sample = {"paradigm": "i,j->ij", "data": ["x", "y"]} class TestEinsumMatrixTranspose(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij->ji", "data": ["A"]} class TestEinsumMatrixRowSum(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij->j", "data": ["A"]} class TestEinsumMatrixColSum(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij->i", "data": ["A"]} class TestEinsumMatrixEleMul(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij,ij->ij", "data": ["A", "A"]} class TestEinsumDegenerateMatrixVecMul(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij,j", "data": ["a", "b"]} class TestEinsumMatrixVecMul(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij,j->i", "data": ["A", "x"]} class TestEinsumMatrixMul(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij,kj->ik", "data": ["A", "B"]} class TestEinsumMatrixOuter(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij,kl->ijkl", "data": ["A", "C"]} class TestEinsumTensorBMM(TestEinsum): def setUp(self): self.sample = {"paradigm": "bij,bjk->bik", "data": ["D", "E"]} class TestEinsumTensorContract1(TestEinsum): def setUp(self): self.sample = {"paradigm": "ijk,jk->i", "data": ["D", "A"]} class TestEinsumTensorContract2(TestEinsum): def setUp(self): self.sample = {"paradigm": "ijk,lk->ijl", "data": ["D", "B"]} class TestEinsumTensorContract3(TestEinsum): def setUp(self): self.sample = {"paradigm": "abcd,dfg->abcfg", "data": ["F", "D"]} class TestEinsumTensorContract4(TestEinsum): def setUp(self): self.sample = {"paradigm": "ijk,jk->ik", "data": ["D", "A"]} class TestEinsumTensorContract5(TestEinsum): def setUp(self): self.sample = {"paradigm": "ijk,jk->ij", "data": ["D", "A"]} class TestEinsumTensorContract6(TestEinsum): def setUp(self): self.sample = {"paradigm": "ik, ijk->j", "data": ["A", "G"]} class TestEinsumTensorContract7(TestEinsum): def setUp(self): self.sample = {"paradigm": "ijk, ik->jk", "data": ["G", "A"]} class TestEinsumEllipsis1(TestEinsum): def setUp(self): self.sample = {"paradigm": "i...->...", "data": ["G"]} class TestEinsumEllipsis2(TestEinsum): def setUp(self): self.sample = {"paradigm": "ij,...i->j...", "data": ["A", "H"]} class TestEinsumEllipsis3(TestEinsum): def setUp(self): self.sample = {"paradigm": "k...,jk", "data": ["F", "I"]} class TestEinsumTestEinsumBilinear(TestEinsum): def setUp(self): self.sample = {"paradigm": "bn,anm,bm->ba", "data": ["B", "E", "I"]} class TestEinsumTestEinsumOthers1(TestEinsum): def setUp(self): self.sample = {"paradigm": "ijkl, lmn->kmn", "data": ["F", "H"]} class TestEinsumTestEinsumOthers2(TestEinsum): def setUp(self): self.sample = {"paradigm": "ijkl, lmn->ijn", "data": ["F", "H"]} class TestEinsumBatch1(TestEinsum): def setUp(self): self.sample = {"paradigm": "blq,bhlk->bhlqk", "data": ["J", "K"]} class TestNumpyTests(unittest.TestCase): def setUp(self): pass def _get_place(self, force_to_use_cpu=False): if force_to_use_cpu: return core.CPUPlace() else: if core.is_compiled_with_cuda(): return core.CUDAPlace(0) return core.CPUPlace() def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8): error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}' self.assertTrue( np.allclose(actual, expect, rtol=rtol, atol=atol), error_msg.format(paddle.get_device(), expect, actual, self.__class__.__name__)) def check_output(self, eqn, *ops): expect = np.einsum(eqn, *ops) with paddle.fluid.dygraph.guard( self._get_place(force_to_use_cpu=False)): pd_operands = [paddle.to_tensor(op) for op in ops] actual = paddle.einsum(eqn, *pd_operands) self.check_output_equal(actual.numpy(), expect) def test_sums(self): for n in range(1, 17): a = np.arange(n).astype('float') self.check_output("i->", a) for n in range(1, 17): a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float') self.check_output("...i->...", a) for n in range(1, 17): a = np.arange(2 * n).reshape(2, n).astype('float') self.check_output("i...->...", a) for n in range(1, 17): a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float') self.check_output("i...->...", a) for n in range(1, 17): a = np.arange(3 * n).reshape(3, n).astype('float') b = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float') self.check_output("..., ...", a, b) for n in range(1, 17): a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float') b = np.arange(n).astype('float') self.check_output("...i, ...i", a, b) for n in range(1, 11): a = np.arange(n * 3 * 2).reshape(n, 3, 2).astype('float') b = np.arange(n).astype('float') self.check_output("i..., i...", a, b) for n in range(1, 17): a = (np.arange(3) + 1).astype('float') b = (np.arange(n) + 1).astype('float') self.check_output("i,j", a, b) for n in range(1, 17): a = np.arange(4 * n).reshape(4, n).astype('float') b = np.arange(n).astype('float') self.check_output("ij, j", a, b) for n in range(1, 17): a = np.arange(4 * n).reshape(4, n).astype('float') b = np.arange(n).astype('float') self.check_output("ji,j", a.T, b.T) for n in range(1, 17): a = np.arange(4 * n).reshape(4, n).astype('float') b = np.arange(n * 6).reshape(n, 6).astype('float') self.check_output("ij,jk", a, b) a = np.arange(12).reshape(3, 4).astype('float') b = np.arange(20).reshape(4, 5).astype('float') c = np.arange(30).reshape(5, 6).astype('float') self.check_output("ij,jk,kl", a, b, c) a = np.arange(60).reshape(3, 4, 5).astype('float') b = np.arange(24).reshape(4, 3, 2).astype('float') self.check_output("ijk, jil -> kl", a, b) for n in range(1, 25): a = np.arange(n).astype('float') self.check_output("...,...", a, a) self.check_output("i,i", a, a) # TODO(@xiongkun): explict broadcast in EinsumOp is not supported, it's not recommend to use einsum like this. #p = np.ones((10, 2)).astype('float') #q = np.ones((1, 2)).astype('float') #self.check_output('ij,ij->j', p, q) # TODO(@xiongkun): explict-label-broadcast in EinsumOp is not supported, it's not recommend to use einsum like this. #x = np.array([2., 3.]).astype('float') #y = np.array([4.]).astype('float') #self.check_output("i, i", x, y) # TODO(@xiongkun): explict-label-broadcast in EinsumOp is not supported, it's not recommend to use einsum like this. #p = np.ones((1, 5)) / 2 #q = np.ones((5, 5)) / 2 #self.check_output("...ij,...jk->...ik", p, p) #self.check_output("...ij,...jk->...ik", p, q) x = np.eye(2).astype('float') y = np.ones(2).astype('float') self.check_output("ji,i->", x, y) self.check_output("i,ij->", y, x) self.check_output("ij,i->", x, y) def test_large_nops(self): pass # TODO(@xiongkun): explict broadcast in EinsumOp is not supported, it's not recommend to use einsum like this. #a = np.arange(4 * 3 * 1 * 4).reshape(4, 3, 1, 4).astype('float') #self.check_output('a...b,b...c,c...d', a, a, a) #self.check_output('a...b,b...c,c...a', a, a, a) #self.check_output('a...b,b...c,c...a', a, a, a) #self.check_output('...ab,...ba,...ab,...ab', a, a, a, a) def test_static_graph(self): paddle.enable_static() fluid = paddle.fluid if fluid.core.is_compiled_with_cuda(): self.place = fluid.CUDAPlace(0) else: self.place = fluid.CPUPlace() main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): a = paddle.static.data(name='a', shape=[3, None, None, None], dtype='float') b = paddle.static.data(name='b', shape=[2, None, None, None], dtype='float') c = paddle.static.data(name='c', shape=[None, None, 2, None], dtype='float') d = paddle.static.data(name='d', shape=[None, None, 5], dtype='float') e = paddle.static.data(name='e', shape=[None, 2, None], dtype='float') outs = [] outs.append(paddle.einsum("ibnd,jbnd->bnij", a, b)) outs.append(paddle.einsum('...ik, ...j', c, d)) outs.append(paddle.einsum('...kj, ...ik', d, e)) outs.append(paddle.einsum('ijk..., ikj', c, e)) outs.append(paddle.einsum('ijk..., ikj->...ij', c, e)) exe = fluid.Executor(self.place) exe.run(startup) a = np.arange(72).reshape(3, 2, 3, 4).astype('float') b = np.arange(48).reshape(2, 2, 3, 4).astype('float') c = np.arange(48).reshape(2, 3, 2, 4).astype('float') d = np.arange(30).reshape(2, 3, 5).astype('float') e = np.arange(12).reshape(2, 2, 3).astype('float') feeds = {'a': a, 'b': b, 'c': c, 'd': d, 'e': e} actual = exe.run(main, feed=feeds, fetch_list=[outs]) expect = [] expect.append(np.einsum("ibnd,jbnd->bnij", a, b)) expect.append(np.einsum('...ik, ...j', c, d)) expect.append(np.einsum('...kj, ...ik', d, e)) expect.append(np.einsum('ijk..., ikj', c, e)) expect.append(np.einsum('ijk..., ikj->...ij', c, e)) for a, e in zip(actual, expect): self.check_output_equal(a, e) class TestStaticGraphShape(unittest.TestCase): def setUp(self): paddle.enable_static() def tearDown(self): paddle.disable_static() def test_shape(self): A = paddle.static.data(name='x', shape=[-1]) B = paddle.static.data(name='y', shape=[384]) C = paddle.einsum('i,d->id', A, B) self.assertEqual(C.shape, (-1, 384)) class TestBF16(unittest.TestCase): """ EinsumOp support bfloat16 type, add unittest here for the correctness. """ def test_shape(self): if paddle.is_compiled_with_cuda() and _is_gpu_bfloat16_supported(): """ MatmulKernel support bfloat16 only if cuda_major >= 11.0 and Compute Capability >= 8.0 """ A = paddle.to_tensor(np.array([1.0, 2.0])).astype(paddle.bfloat16) A = A.cuda() B = paddle.to_tensor(np.array([2.0, 3.0])).astype(paddle.bfloat16) B = B.cuda() C = paddle.einsum('i,i->', A, B) self.assertEqual(C.astype(paddle.float32).item(), 8.0) class TestComplex(unittest.TestCase): """ EinsumOp support Complex type """ def test_shape(self): a = paddle.rand([4, 4]) b = paddle.rand([4, 4]) c = paddle.einsum('xy,yz->xz', a, b) a = paddle.cast(a, 'complex64') b = paddle.cast(b, 'complex64') c = paddle.einsum('xy,yz->xz', a, b) if __name__ == "__main__": unittest.main()