# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import sys sys.path.append("../") from op_test import OpTest from paddle import fluid class TestSequenceConcat(OpTest): def setLoD(self): self.lod1 = [7, 3] self.lod2 = [12, 8] self.out_lod = [19, 11] def setUp(self): x1 = np.random.random(size=(10, 80)).astype('float64') x2 = np.random.random(size=(20, 80)).astype('float64') self.setLoD() out = np.concatenate((x1[0:self.lod1[0]], x2[0:self.lod2[0]], x1[self.lod1[0]:], x2[self.lod2[0]:])) self.op_type = "sequence_concat" self.inputs = { 'X': [("x1", (x1, [self.lod1])), ("x2", (x2, [self.lod2]))] } self.outputs = {"Out": (out, [self.out_lod])} def test_output(self): self.check_output() def test_dx(self): self.check_grad(inputs_to_check=['x1', 'x2'], output_names="Out") class TestSequenceConcatCase2(TestSequenceConcat): def setLoD(self): self.lod1 = [10, 0] self.lod2 = [12, 8] self.out_lod = [22, 8] class TestSequenceConcatCase3(TestSequenceConcat): def setLoD(self): self.lod1 = [10, 0] self.lod2 = [20, 0] self.out_lod = [30, 0] class TestSequenceConcatCase4(TestSequenceConcat): def setLoD(self): self.lod1 = [0, 10] self.lod2 = [0, 20] self.out_lod = [0, 30] class TestSequenceConcatCase5(TestSequenceConcat): def setLoD(self): self.lod1 = [0, 10] self.lod2 = [20, 0] self.out_lod = [20, 10] class TestSequenceConcatOpError(unittest.TestCase): def test_errors(self): def test_input_list(): # the input type must be list x_data = fluid.layers.data(name='x', shape=[4], dtype='float32') fluid.layers.sequence_concat(input=x_data) self.assertRaises(TypeError, test_input_list) def test_variable1(): # the input element type must be Variable x1_data = np.array([[3, 5]]).astype('float32') y1_data = fluid.layers.data(name='y1', shape=[4], dtype='float32') fluid.layers.sequence_concat(input=[x1_data, y1_data]) def test_variable2(): x2_data = np.array([[3, 5]]).astype('float32') y2_data = fluid.layers.data(name='y2', shape=[4], dtype='float32') fluid.layers.sequence_concat(input=[y2_data, x2_data]) for i in range(2): if i == 0: self.assertRaises(TypeError, test_variable1) else: self.assertRaises(TypeError, test_variable2) def test_dtype(): # dtype must be 'float32', 'float64', 'int64' x3_data = fluid.layers.data(name="x3", shape=[3, 5], dtype='int32') y3_data = fluid.layers.data(name="y3", shape=[3, 5], dtype='int16') input_list = [x3_data, y3_data] fluid.layers.sequence_concat(input=input_list) self.assertRaises(TypeError, test_dtype) if __name__ == '__main__': unittest.main()