/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; enum StateVariable { TP = 0, FP, TN, FN }; template class PrecisionRecallKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* in0 = ctx.Input("Indices"); auto* in1 = ctx.Input("Labels"); auto* in2 = ctx.Input("Weights"); auto* in3 = ctx.Input("StatesInfo"); auto* out0 = ctx.Output("BatchMetrics"); auto* out1 = ctx.Output("AccumMetrics"); auto* out2 = ctx.Output("AccumStatesInfo"); const int* ids_data = in0->data(); const int* labels_data = in1->data(); size_t cls_num = static_cast(ctx.Attr("class_number")); const T* weights_data = in2 ? in2->data() : nullptr; const T* states_data = in3 ? in3->data() : nullptr; double* batch_metrics_data = out0->mutable_data(ctx.GetPlace()); double* accum_metrics_data = out1->mutable_data(ctx.GetPlace()); out2->mutable_data(ctx.GetPlace()); auto accum_states = EigenMatrix::From(*out2); accum_states.setZero(); T* accum_states_data = out2->data(); size_t sample_num = in0->dims()[0]; size_t state_var_num = 4; // TP FP TN FN // get states info for current batch for (size_t i = 0; i < sample_num; ++i) { size_t idx = ids_data[i]; size_t label = labels_data[i]; PADDLE_ENFORCE_GE(idx, 0, platform::errors::InvalidArgument( "Class index of each instance should be " "larger than 0, But received (%d)", idx)); PADDLE_ENFORCE_LT(idx, cls_num, platform::errors::InvalidArgument( "Class index of each instance should be less than " "cls_num (%d), But received (%d)", cls_num, idx)); PADDLE_ENFORCE_GE(label, 0, platform::errors::InvalidArgument( "Label of each instance should be larger " "than 0, But received (%d)", label)); PADDLE_ENFORCE_LT(label, cls_num, platform::errors::InvalidArgument( "Label of each instance should be less than " "cls_num (%d), But received (%d)", cls_num, label)); T w = weights_data ? weights_data[i] : 1.0; if (idx == label) { accum_states_data[idx * state_var_num + TP] += w; for (size_t j = 0; j < cls_num; ++j) { accum_states_data[j * state_var_num + TN] += w; } accum_states_data[idx * state_var_num + TN] -= w; } else { accum_states_data[label * state_var_num + FN] += w; accum_states_data[idx * state_var_num + FP] += w; for (size_t j = 0; j < cls_num; ++j) { accum_states_data[j * state_var_num + TN] += w; } accum_states_data[idx * state_var_num + TN] -= w; accum_states_data[label * state_var_num + TN] -= w; } } ComputeMetrics(accum_states_data, batch_metrics_data, state_var_num, cls_num); if (states_data) { for (size_t i = 0; i < cls_num; ++i) { for (size_t j = 0; j < state_var_num; ++j) { size_t idx = i * state_var_num + j; accum_states_data[idx] += states_data[idx]; } } } ComputeMetrics(accum_states_data, accum_metrics_data, state_var_num, cls_num); } // expose to be reused static inline T CalcPrecision(T tp_count, T fp_count) { if (tp_count > 0.0 || fp_count > 0.0) { return tp_count / (tp_count + fp_count); } return 1.0; } static inline T CalcRecall(T tp_count, T fn_count) { if (tp_count > 0.0 || fn_count > 0.0) { return tp_count / (tp_count + fn_count); } return 1.0; } static inline T CalcF1Score(T precision, T recall) { if (precision > 0.0 || recall > 0.0) { return 2 * precision * recall / (precision + recall); } return 0.0; } protected: void ComputeMetrics(const T* states_data, double* metrics_data, size_t state_var_num, size_t cls_num) const { T total_tp_count = 0; T total_fp_count = 0; T total_fn_count = 0; T macro_avg_precision = 0.0; T macro_avg_recall = 0.0; for (size_t i = 0; i < cls_num; ++i) { T tp_count = states_data[i * state_var_num + TP]; T fp_count = states_data[i * state_var_num + FP]; T fn_count = states_data[i * state_var_num + FN]; total_tp_count += tp_count; total_fp_count += fp_count; total_fn_count += fn_count; macro_avg_precision += CalcPrecision(tp_count, fp_count); macro_avg_recall += CalcRecall(tp_count, fn_count); } macro_avg_precision /= cls_num; macro_avg_recall /= cls_num; T macro_f1_score = CalcF1Score(macro_avg_precision, macro_avg_recall); T micro_avg_precision = CalcPrecision(total_tp_count, total_fp_count); T micro_avg_recall = CalcRecall(total_tp_count, total_fn_count); T micro_f1_score = CalcF1Score(micro_avg_precision, micro_avg_recall); // fill metrics data metrics_data[0] = macro_avg_precision; metrics_data[1] = macro_avg_recall; metrics_data[2] = macro_f1_score; metrics_data[3] = micro_avg_precision; metrics_data[4] = micro_avg_recall; metrics_data[5] = micro_f1_score; } }; } // namespace operators } // namespace paddle