# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import pickle import unittest import numpy as np import paddle from paddle.static import InputSpec import paddle.fluid as fluid from paddle.fluid.dygraph import Linear from paddle.fluid.dygraph import declarative, ProgramTranslator from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME, VARIABLE_FILENAME BATCH_SIZE = 32 BATCH_NUM = 10 SEED = 10 def random_batch_reader(input_size, label_size): def _get_random_inputs_and_labels(input_size, label_size): np.random.seed(SEED) input = np.random.random(size=input_size).astype('float32') label = np.random.random(size=label_size).astype('int64') return input, label def __reader__(): for _ in range(BATCH_NUM): batch_input, batch_label = _get_random_inputs_and_labels( [BATCH_SIZE, input_size], [BATCH_SIZE, label_size]) yield batch_input, batch_label return __reader__ class LinearNet(fluid.dygraph.Layer): def __init__(self, in_size, out_size): super(LinearNet, self).__init__() self._linear = Linear(in_size, out_size) @declarative def forward(self, x): return self._linear(x) class LinearNetWithInputSpec(fluid.dygraph.Layer): def __init__(self, in_size, out_size): super(LinearNetWithInputSpec, self).__init__() self._linear = Linear(in_size, out_size) @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')]) def forward(self, x): return self._linear(x) class LinearNetNotDeclarative(fluid.dygraph.Layer): def __init__(self, in_size, out_size): super(LinearNetNotDeclarative, self).__init__() self._linear = Linear(in_size, out_size) def forward(self, x): return self._linear(x) class LinerNetWithLabel(paddle.nn.Layer): def __init__(self, in_size, out_size): super(LinerNetWithLabel, self).__init__() self._linear = Linear(in_size, out_size) @declarative(input_spec=[ InputSpec( shape=[None, 784], dtype='float32', name="image"), InputSpec( shape=[None, 1], dtype='int64', name="label") ]) def forward(self, x, label): out = self._linear(x) loss = fluid.layers.cross_entropy(out, label) avg_loss = fluid.layers.mean(loss) return out, avg_loss class LinearNetReturnLoss(fluid.dygraph.Layer): def __init__(self, in_size, out_size): super(LinearNetReturnLoss, self).__init__() self._linear = Linear(in_size, out_size) @declarative def forward(self, x): y = self._linear(x) z = self._linear(y) loss = fluid.layers.mean(z) return z, loss class LinearNetMultiInput(fluid.dygraph.Layer): def __init__(self, in_size, out_size): super(LinearNetMultiInput, self).__init__() self._linear1 = Linear(in_size, out_size) self._linear2 = Linear(in_size, out_size) @declarative(input_spec=[ InputSpec( [None, 8], dtype='float32'), InputSpec( [None, 8], dtype='float32') ]) def forward(self, x, y): x_out = self._linear1(x) y_out = self._linear2(y) loss = fluid.layers.mean(x_out + y_out) return x_out, y_out, loss class MultiLoadingLinearNet(fluid.dygraph.Layer): def __init__(self, size, model_path): super(MultiLoadingLinearNet, self).__init__() self._linear = Linear(size, size) self._load_linear1 = fluid.dygraph.jit.load(model_path) self._load_linear2 = fluid.dygraph.jit.load(model_path) @declarative def forward(self, x): tmp1 = self._linear(x) tmp2 = self._load_linear1(tmp1) tmp3 = self._load_linear2(tmp2) y = self._linear(tmp3) return y class LinearNetReturnHidden(fluid.dygraph.Layer): def __init__(self, in_size, out_size): super(LinearNetReturnHidden, self).__init__() self._linear_1 = Linear(in_size, out_size) self._linear_2 = Linear(in_size, out_size) @declarative def forward(self, x): y = self._linear_1(x) z = self._linear_2(y) loss = fluid.layers.mean(z) return y, loss class EmptyLayer(paddle.nn.Layer): def __init__(self): super(EmptyLayer, self).__init__() @paddle.jit.to_static def forward(self, x): return x class NoParamLayer(paddle.nn.Layer): def __init__(self): super(NoParamLayer, self).__init__() @paddle.jit.to_static def forward(self, x, y): return x + y def train(layer, input_size=784, label_size=1): # create optimizer sgd = fluid.optimizer.SGDOptimizer( learning_rate=0.01, parameter_list=layer.parameters()) # create data loader train_loader = fluid.io.DataLoader.from_generator(capacity=5) train_loader.set_batch_generator( random_batch_reader(input_size, label_size)) # train for data in train_loader(): img, label = data label.stop_gradient = True cost = layer(img) loss = fluid.layers.cross_entropy(cost, label) avg_loss = fluid.layers.mean(loss) avg_loss.backward() sgd.minimize(avg_loss) layer.clear_gradients() return [img], layer, avg_loss def train_with_label(layer, input_size=784, label_size=1): # create optimizer sgd = fluid.optimizer.SGDOptimizer( learning_rate=0.01, parameter_list=layer.parameters()) # create data loader train_loader = fluid.io.DataLoader.from_generator(capacity=5) train_loader.set_batch_generator( random_batch_reader(input_size, label_size)) # train for data in train_loader(): img, label = data label.stop_gradient = True out, avg_loss = layer(img, label) avg_loss.backward() sgd.minimize(avg_loss) layer.clear_gradients() return out class TestJitSaveLoad(unittest.TestCase): def setUp(self): self.model_path = "model.test_jit_save_load" # enable dygraph mode fluid.enable_dygraph() # config seed paddle.manual_seed(SEED) paddle.framework.random._manual_program_seed(SEED) def train_and_save_model(self, model_path=None): layer = LinearNet(784, 1) example_inputs, layer, _ = train(layer) final_model_path = model_path if model_path else self.model_path orig_input_types = [type(x) for x in example_inputs] fluid.dygraph.jit.save( layer=layer, model_path=final_model_path, input_spec=example_inputs) new_input_types = [type(x) for x in example_inputs] self.assertEqual(orig_input_types, new_input_types) return layer def test_save_load(self): # train and save model train_layer = self.train_and_save_model() # load model program_translator = ProgramTranslator() program_translator.enable(False) loaded_layer = fluid.dygraph.jit.load(self.model_path) self.load_and_inference(train_layer, loaded_layer) self.load_dygraph_state_dict(train_layer) self.load_and_finetune(train_layer, loaded_layer) program_translator.enable(True) def load_and_inference(self, train_layer, infer_layer): train_layer.eval() infer_layer.eval() # inference & compare x = fluid.dygraph.to_variable( np.random.random((1, 784)).astype('float32')) self.assertTrue( np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy())) def load_and_finetune(self, train_layer, load_train_layer): train_layer.train() load_train_layer.train() # train & compare img0, _, train_loss = train(train_layer) img1, _, load_train_loss = train(load_train_layer) self.assertTrue( np.array_equal(train_loss.numpy(), load_train_loss.numpy())) def load_dygraph_state_dict(self, train_layer): train_layer.eval() # construct new model new_layer = LinearNet(784, 1) orig_state_dict = new_layer.state_dict() load_state_dict, _ = fluid.dygraph.load_dygraph(self.model_path) for structured_name in orig_state_dict: self.assertTrue(structured_name in load_state_dict) new_layer.set_state_dict(load_state_dict) new_layer.eval() # inference & compare x = fluid.dygraph.to_variable( np.random.random((1, 784)).astype('float32')) self.assertTrue( np.array_equal(train_layer(x).numpy(), new_layer(x).numpy())) def test_load_dygraph_no_path(self): model_path = "model.test_jit_save_load.no_path" new_layer = LinearNet(784, 1) with self.assertRaises(ValueError): model_dict, _ = fluid.dygraph.load_dygraph(model_path) def test_jit_load_model_incomplete(self): model_path = "model.test_jit_save_load.remove_variables" self.train_and_save_model(model_path=model_path) # remove `__variables__` var_path = os.path.join(model_path, VARIABLE_FILENAME) os.remove(var_path) with self.assertRaises(ValueError): paddle.jit.load(model_path) class TestSaveLoadWithInputSpec(unittest.TestCase): def setUp(self): # enable dygraph mode fluid.enable_dygraph() def test_with_input_spec(self): net = LinearNetReturnLoss(8, 8) # set x.shape = [None, 8] net.forward = declarative( net.forward, input_spec=[InputSpec( [None, 8], name='x')]) model_path = "model.input_spec.output_spec" # check inputs and outputs self.assertTrue(len(net.forward.inputs) == 1) input_x = net.forward.inputs[0] self.assertTrue(input_x.shape == (-1, 8)) self.assertTrue(input_x.name == 'x') # 1. prune loss output_spec = net.forward.outputs[:1] fluid.dygraph.jit.save(net, model_path, output_spec=output_spec) # 2. load to infer infer_layer = fluid.dygraph.jit.load(model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32')) pred = infer_layer(x) def test_multi_in_out(self): net = LinearNetMultiInput(8, 8) model_path = "model.multi_inout.output_spec1" # 1. check inputs and outputs self.assertTrue(len(net.forward.inputs) == 2) input_x = net.forward.inputs[0] input_y = net.forward.inputs[1] self.assertTrue(input_x.shape == (-1, 8)) self.assertTrue(input_y.shape == (-1, 8)) # 2. prune loss output_spec = net.forward.outputs[:2] fluid.dygraph.jit.save(net, model_path, output_spec=output_spec) # 3. load to infer infer_layer = fluid.dygraph.jit.load(model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32')) y = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32')) # 4. predict pred_x, pred_y = infer_layer(x, y) # 1. prune y and loss model_path = "model.multi_inout.output_spec2" output_spec = net.forward.outputs[:1] fluid.dygraph.jit.save( net, model_path, [input_x], output_spec=output_spec) # 2. load again infer_layer2 = fluid.dygraph.jit.load(model_path) # 3. predict pred_xx = infer_layer2(x) # 4. assert pred_x == pred_xx self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy())) class TestJitSaveLoadConfig(unittest.TestCase): def setUp(self): # enable dygraph mode fluid.enable_dygraph() # config seed paddle.manual_seed(SEED) paddle.framework.random._manual_program_seed(SEED) def basic_save_load(self, layer, model_path, **configs): # 1. train & save example_inputs, train_layer, _ = train(layer) fluid.dygraph.jit.save( layer=train_layer, model_path=model_path, input_spec=example_inputs, **configs) # 2. load infer_layer = fluid.dygraph.jit.load(model_path, **configs) train_layer.eval() # 3. inference & compare x = fluid.dygraph.to_variable( np.random.random((1, 784)).astype('float32')) self.assertTrue( np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy())) def test_model_filename(self): layer = LinearNet(784, 1) model_path = "model.save_load_config.output_spec" self.basic_save_load(layer, model_path, model_filename="__simplenet__") def test_params_filename(self): layer = LinearNet(784, 1) model_path = "model.save_load_config.params_filename" self.basic_save_load(layer, model_path, params_filename="__params__") def test_separate_params(self): layer = LinearNet(784, 1) model_path = "model.save_load_config.separate_params" self.basic_save_load(layer, model_path, separate_params=True) def test_output_spec(self): train_layer = LinearNetReturnLoss(8, 8) adam = fluid.optimizer.AdamOptimizer( learning_rate=0.1, parameter_list=train_layer.parameters()) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32')) for i in range(10): out, loss = train_layer(x) loss.backward() adam.minimize(loss) train_layer.clear_gradients() model_path = "model.save_load_config.output_spec" output_spec = [out] fluid.dygraph.jit.save( layer=train_layer, model_path=model_path, input_spec=[x], output_spec=output_spec) train_layer.eval() infer_layer = fluid.dygraph.jit.load(model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32')) self.assertTrue( np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy())) class TestJitMultipleLoading(unittest.TestCase): def setUp(self): self.linear_size = 4 self.model_path = "model.jit_multi_load" # enable dygraph mode fluid.enable_dygraph() # config seed paddle.manual_seed(SEED) paddle.framework.random._manual_program_seed(SEED) # train and save base model self.train_and_save_orig_model() def train_and_save_orig_model(self): layer = LinearNet(self.linear_size, self.linear_size) example_inputs, layer, _ = train(layer, self.linear_size, 1) fluid.dygraph.jit.save( layer=layer, model_path=self.model_path, input_spec=example_inputs) def test_load_model_retransform_inference(self): multi_loaded_layer = MultiLoadingLinearNet(self.linear_size, self.model_path) state_dict = multi_loaded_layer.state_dict() name_set = set() for _, var in state_dict.items(): self.assertTrue(var.name not in name_set) name_set.add(var.name) class TestJitPruneModelAndLoad(unittest.TestCase): def setUp(self): self.linear_size = 4 self.model_path = "model.jit_prune_model_and_load" # enable dygraph mode fluid.enable_dygraph() # config seed paddle.manual_seed(SEED) paddle.framework.random._manual_program_seed(SEED) def train_and_save(self): train_layer = LinearNetReturnHidden(8, 8) adam = fluid.optimizer.AdamOptimizer( learning_rate=0.1, parameter_list=train_layer.parameters()) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32')) for i in range(10): hidden, loss = train_layer(x) loss.backward() adam.minimize(loss) train_layer.clear_gradients() output_spec = [hidden] fluid.dygraph.jit.save( layer=train_layer, model_path=self.model_path, input_spec=[x], output_spec=output_spec) return train_layer def test_load_pruned_model(self): train_layer = self.train_and_save() train_layer.eval() infer_layer = fluid.dygraph.jit.load(self.model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32')) self.assertTrue( np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy())) def test_load_var_not_in_extra_var_info(self): self.train_and_save() # chage extra var info var_info_path = os.path.join(self.model_path, EXTRA_VAR_INFO_FILENAME) with open(var_info_path, 'rb') as f: extra_var_info = pickle.load(f) extra_var_info.clear() with open(var_info_path, 'wb') as f: pickle.dump(extra_var_info, f, protocol=2) with self.assertRaises(RuntimeError): fluid.dygraph.jit.load(self.model_path) class TestJitSaveMultiCases(unittest.TestCase): def setUp(self): # enable dygraph mode fluid.enable_dygraph() # config seed paddle.manual_seed(SEED) paddle.framework.random._manual_program_seed(SEED) def verify_inference_correctness(self, layer, model_path, with_label=False): layer.eval() loaded_layer = paddle.jit.load(model_path) loaded_layer.eval() # inference & compare x = paddle.to_tensor(np.random.random((1, 784)).astype('float32')) if with_label: y = paddle.to_tensor(np.random.random((1, 1)).astype('int64')) pred, _ = layer(x, y) pred = pred.numpy() else: pred = layer(x).numpy() loaded_pred = loaded_layer(x).numpy() self.assertTrue( np.array_equal(pred, loaded_pred), msg="Result diff when load and inference:\nlayer result:\n{}\n" \ "loaded layer result:\n{}".format(pred, loaded_pred)) def test_no_prune_to_static_after_train(self): layer = LinearNet(784, 1) train(layer) model_path = "test_no_prune_to_static_after_train" paddle.jit.save(layer, model_path) self.verify_inference_correctness(layer, model_path) def test_no_prune_to_static_no_train(self): layer = LinearNetWithInputSpec(784, 1) model_path = "test_no_prune_to_static_no_train" paddle.jit.save(layer, model_path) self.verify_inference_correctness(layer, model_path) def test_no_prune_no_to_static_after_train(self): layer = LinearNetNotDeclarative(784, 1) train(layer) model_path = "test_no_prune_no_to_static_after_train" paddle.jit.save( layer, model_path, input_spec=[InputSpec( shape=[None, 784], dtype='float32')]) self.verify_inference_correctness(layer, model_path) def test_no_prune_no_to_static_after_train_with_examples(self): layer = LinearNetNotDeclarative(784, 1) example_inputs, _, _ = train(layer) model_path = "test_no_prune_no_to_static_after_train_with_examples" fluid.dygraph.jit.save( layer=layer, model_path=model_path, input_spec=example_inputs) self.verify_inference_correctness(layer, model_path) def test_no_prune_no_to_static_no_train(self): layer = LinearNetNotDeclarative(784, 1) model_path = "test_no_prune_no_to_static_no_train" paddle.jit.save( layer, model_path, input_spec=[InputSpec( shape=[None, 784], dtype='float32')]) self.verify_inference_correctness(layer, model_path) def test_prune_to_static_after_train(self): layer = LinerNetWithLabel(784, 1) out = train_with_label(layer) model_path = "test_prune_to_static_after_train" paddle.jit.save( layer, model_path, input_spec=[ InputSpec( shape=[None, 784], dtype='float32', name="image") ], output_spec=[out]) self.verify_inference_correctness(layer, model_path, True) def test_prune_to_static_no_train(self): layer = LinerNetWithLabel(784, 1) model_path = "test_prune_to_static_no_train" # TODO: no train, cannot get output_spec var here # now only can use index output_spec = layer.forward.outputs[:1] paddle.jit.save( layer, model_path, input_spec=[ InputSpec( shape=[None, 784], dtype='float32', name="image") ], output_spec=output_spec) self.verify_inference_correctness(layer, model_path, True) def test_no_prune_input_spec_name_warning(self): layer = LinearNetWithInputSpec(784, 1) train(layer) model_path = "test_no_prune_input_spec_name_warning" paddle.jit.save( layer, model_path, input_spec=[InputSpec( shape=[None, 784], dtype='float32')]) paddle.jit.save( layer, model_path, input_spec=[ InputSpec( shape=[None, 784], dtype='float32', name='feed_input') ]) self.verify_inference_correctness(layer, model_path) def test_not_prune_output_spec_name_warning(self): layer = LinearNet(784, 1) train(layer) model_path = "test_not_prune_output_spec_name_warning" out = paddle.to_tensor(np.random.random((1, 1)).astype('float')) paddle.jit.save(layer, model_path, output_spec=[out]) self.verify_inference_correctness(layer, model_path) def test_prune_input_spec_name_error(self): layer = LinerNetWithLabel(784, 1) model_path = "test_prune_input_spec_name_error" with self.assertRaises(ValueError): paddle.jit.save( layer, model_path, input_spec=[InputSpec( shape=[None, 784], dtype='float32')]) with self.assertRaises(ValueError): paddle.jit.save( layer, model_path, input_spec=[ InputSpec( shape=[None, 784], dtype='float32', name='feed_input') ]) def test_prune_output_spec_name_error(self): layer = LinerNetWithLabel(784, 1) train_with_label(layer) model_path = "test_prune_to_static_after_train" out = paddle.to_tensor(np.random.random((1, 1)).astype('float')) with self.assertRaises(ValueError): paddle.jit.save( layer, model_path, input_spec=[ InputSpec( shape=[None, 784], dtype='float32', name="image") ], output_spec=[out]) class TestJitSaveLoadEmptyLayer(unittest.TestCase): def setUp(self): self.model_path = "model.jit_save_load_empty_layer" # enable dygraph mode paddle.disable_static() def test_save_load_empty_layer(self): layer = EmptyLayer() x = paddle.to_tensor(np.random.random((10)).astype('float32')) out = layer(x) paddle.jit.save(layer, self.model_path) load_layer = paddle.jit.load(self.model_path) load_out = load_layer(x) self.assertTrue(np.array_equal(out, load_out)) class TestJitSaveLoadNoParamLayer(unittest.TestCase): def setUp(self): self.model_path = "model.jit_save_load_no_param_layer" # enable dygraph mode paddle.disable_static() def test_save_load_no_param_layer(self): layer = NoParamLayer() x = paddle.to_tensor(np.random.random((5)).astype('float32')) y = paddle.to_tensor(np.random.random((5)).astype('float32')) out = layer(x, y) paddle.jit.save(layer, self.model_path) load_layer = paddle.jit.load(self.model_path) load_out = load_layer(x, y) self.assertTrue(np.array_equal(out, load_out)) if __name__ == '__main__': unittest.main()